MATH 311
Topics in Applied Mathematics

Lecture 23:
Fourier series (continued).



Fourier series

Standard Fourier series is a series of the form
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aop + E 1a,,cosner g 1b,,smnx.
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Each term of the series is a 27-periodic function.
If the series converges, then the sum is also
2m-periodic.

More general Fourier series:
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Each term of this series is a 2L-periodic function.



Fourier series

To each integrable function F:[—L,L] — R we
associate a Fourier series

o) nmx o0 nmx
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n=1 L
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such that ,
a =5 [ F(x)dx
and forn>1 , )
a, = %/LF( ) cos X dx



Example. Fourier series of the function F(x) = x
on the interval [—m, 7] is

n+1

2 E sin nx
n=1 n
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:2(sinx—55in2x—i——sin3x—Zsin4x—l—--').
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Fourier series of the same function F(x) = x on an
interval [—L, L] is

2L oo (=1 opmx
=> sin ——.
T n=1 n L



Convergence theorems

Theorem 1 Fourier series of a continuous function
on [—L, L] converges to this function with respect
to the distance

dist(f,g) = If — gll = (/_L F(x) = g(X)\de)

1/2
L
However convergence in the sense of Theorem 1

need not imply pointwise convergence.

Theorem 2 Fourier series of a smooth function on
[—L, L] converges pointwise to this function on the
open interval (—L,L).
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Jump discontinuity

Piecewise continuous = finitely many
jump discontinuities
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Piecewise smooth function

(both function and its derivative
are piecewise continuous)



fix) = x1/3

Continuous, but not piecewise smooth function



Convergence theorem

Suppose f : [—L, L] — R is a piecewise smooth
function. Let F : R — R be the 2[-periodic
extension of f. That is, F is 2L-periodic and
F(x) = f(x) for =L < x < L. Clearly, F is also
piecewise smooth.

Theorem The Fourier series of the function f
converges everywhere. The sum at a point x is
equal to F(x) if F is continuous at x. Otherwise
the sum is equal to
F(x—=) + F(x+)
2
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Function and its Fourier series



Gibbs’ phenomenon
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Left graph: Fourier series of F(x) = 2x.
Right graph: 12th partial sum of the series.

The maximal value of the nth partial sum for large
n is about 17.9% higher than the maximal value of
the series. This is the so-called Gibbs’ overshoot.



Fourier sine and cosine series

Suppose f(x) is an integrable function on [0, L].
The Fourier sine series of f

and the Fourier cosine series of f
O
Ao + E A, cos X
n=1

are defined as follows:

L
B, = %/0 f(x) sin 7 dx;

L L
Aoz%/o f(x) dx, An:%/o f(x)cos > dx, n>1.



x) ~ ap+ g , @n COs 7% 4+ g b, sin 7%,
n= n=1

where

L L
a0:2—1L/_Lf(x)dx, an:%/_Lf(x)cos”iLxdx, n>1,

L
b, = l/ f(x)sin 7 dx.

If fis odd, f(—x) = —f(x), then a, = 0 and

L
b, = %/0 f(x) sin 77 dx.

Similarly, if f is even, f(—x) = f(x), then b, =0
and a, = A,.



Proposition (i) The Fourier series of an odd
function f : [—L, L] — R coincides with its Fourier
sine series on [0, L].

(ii) The Fourier series of an even function
f :[—L, L] — R coincides with its Fourier cosine
series on [0, L].

Conversely, the Fourier sine series of a function
f [0, L] — R is the Fourier series of its odd
extension to [—L, L].

The Fourier cosine series of f is the Fourier series
of its even extension to [—L, L].
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Fourier sine series
(2L-periodic and odd)
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Fourier cosine series
(2L-periodic and even)
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Example. Fourier cosine series of F(x) = x.
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Example. Fourier series of the function f(x) = x2.

Proposition Fourier series of an odd function
contains only sines, while Fourier series of an even
function contains only cosines and a constant term.

Theorem Suppose that a function
f :[—m,m] — R is continuous, piecewise smooth,
and f(—m) = f(m).

Then the Fourier series of f’ can be obtained via
term-by-term differentiation of the Fourier series
of f.



Example. Fourier series of the function f(x) = x°.

x% ~ ay + a1 cos x + ap cos 2x + a3 cos 3x + - - -

Term-by-term differentiation yields

—a1sinx — 2apsin2x — 3azsin3x — 4a,sindx — - - -
This should be the Fourier series of f'(x) = 2x,
which is

2x ~4(sinx— %sin2x+%sin3x— %sin4x+---).
Hence a, = (—1)"% for n> 1.

e
. . 2
It remains to find ay = %/ x2 dx = T

—T



Example. Fourier series of the function f(x) = x2.

n COS NXx
x° N——|—4 g
n1 n

Ly L osax = Leos3x 4+ = cos4
= — — COS X — COS £X — — COS 1vX — COSs4a4x — - -+
3 4 9 16

The series converges to f(x) for any —7 < x < .

2 1 1 1
For x = 0 we obtain: %:1_§ 22

2 1 1
For x = m we obtain: %—1+§+¥+42+



Hilbert basis

Let V be an infinite-dimensional inner product
space. Suppose that fi, f,... is a maximal
orthogonal set in V, i.e., there is no nonzero
vector f € V such that (f,f,) =0, n=1,2,....

Then f,f,... is a Hilbert basis for V, which
means that any g € V' can be expanded into a

series .
g = Z B cnfn (cn €R)

that converges with respect to the distance
dist(f,g) = [|f — gl = V{f —g.f — g).




g = anl cfhn = (g, h) = anl colfa, h), he V.

In particular, (g, fn) = ZOO

n=1

C,,<f,,, fm> - Cm<fm7 fm)

— the expansion is unique: ¢, = )
° ) (Fos Fo)

Also,
. o0 . [e.e] 2
g.8)=) _ alfng)=D |l (ffa).

oo ’fn 2
w8 =2, |<<i f>>|

(Parseval’s equality)



V = Cla.b], (f.g) = / F(x)g(x) dx.

ho(x) =1, hy(x) = cos CaTI hn(x) = cos ’”TTX
fi(x) = sin T%, f(x) = sin %TX oy Bo(X) = sin 2L

Functions h, (n>0) and f, (n > 1) form a maximal
orthogonal set in C[—L, L]. Functions h, (n > 0) form a
maximal orthogonal set in C[0, L]. Functions f, (n > 1) form
another maximal orthogonal set in C[0, L].

Parseval’s equality for Fourier sine series:

2 [t o0
LR ae= 30 el

o0
where f(x) ~ g ,CnSin 7
n—




Example. f(x)=x, 0<x <.
S 2
_1\nt+1l = o
f(x) E n:l( 1) - sin nx

Parseval’s equality:



