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Lecture 24:
Heat equation (continued).

Bessel functions.



System of linear ODEs

{

dx
dt

= 2x + y ,
dy

dt
= x + 2y ,

x(0) = y(0) = 1.

This initial value problem can be rewritten in vector
form:

dv

dt
= L(v), v(0) = v0,

where v =

(

x

y

)

, L(v) =

(

2 1
1 2

)

v, v0 =

(

1
1

)

.

If L(w) = λw, then the system has a solution
v(t) = eλtw.



dv

dt
= L(v), v(0) = v0.

Suppose that the linear operator L is diagonalizable, i.e., there
exists a basis w1,w2, . . . ,wn formed by its eigenvectors:
L(wi) = λiwi .

Then the initial value problem is solved as follows:

• expand the initial value v0 into a linear combination

v0 = c1w1 + c2w2 + · · · + cnwn;

• write down the solution:

v(t) = c1e
λ1tw1 + c2e

λ2tw2 + · · · + cne
λntwn.

If, in addition, w1,w2, . . . ,wn is an orthogonal set, then

ci =
v0 · wi

wi · wi

, i = 1, 2, . . . , n.



Heat equation

∂u

∂t
= k

∂2u

∂x2
, u(x , 0) = f (x) (0 ≤ x ≤ L),

u(0, t) = u(L, t) = 0.

Consider vector spaces V = {φ ∈ C 2[0, L] : φ(0) = φ(L) = 0},
W = C [0, L] and a linear operator L : V → W given by
L(φ) = kφ′′. Then the initial-boundary value problem for the
heat equation can be represented as the initial value problem
for a linear ODE on the space V :

dF

dt
= L(F ), F (0) = f .

The space V is endowed with an inner product

〈f , g〉 =

∫

L

0

f (x)g(x) dx .



L(φ) = kφ′′, φ ∈ V = {φ ∈ C 2[0, L] : φ(0)=φ(L)=0}.
Eigenvalues of L: λn = −k(nπ

L
)2, n = 1, 2, . . .

Eigenfunctions: φn(x) = sin nπx
L

.

The eigenfunctions φ1, φ2, . . . form a maximal orthogonal set
(Hilbert basis) in the space V .

To solve the initial-boundary value problem for the heat equation,

• expand the initial data f into a series

f (x) =
∑∞

n=1

Bnφn(x), Bn =
〈f , φn〉
〈φn, φn〉

(this is the Fourier sine series of f on [0, L]);

• write down the solution:

u(x , t) =
∑∞

n=1

Bne
λntφn(x) =

∑∞

n=1

Bn exp
(

−n2π2

L2
kt

)

sin
nπx

L
.



Heat equation: insulated ends

∂u

∂t
= k

∂2u

∂x2
, u(x , 0) = f (x) (0 ≤ x ≤ L),

∂u
∂x

(0, t) = ∂u
∂x

(L, t) = 0.

• Expand f into the Fourier cosine series on [0, L]:

f (x) = A0 +
∑∞

n=1
An cos

nπx

L
.

• Write down the solution:

u(x , t) = A0 +
∑∞

n=1
An exp

(

−n2π2

L2
kt

)

cos
nπx

L
.



Heat equation: circular ring

∂u

∂t
= k

∂2u

∂x2
, u(x , 0) = f (x) (−L ≤ x ≤ L),

u(−L, t) = u(L, t), ∂u
∂x

(−L, t) = ∂u
∂x

(L, t).

• Expand f into the Fourier series on [−L, L]:

f (x) = A0 +
∞

∑

n=1

(

An cos
nπx

L
+ Bn sin

nπx

L

)

.

• Write down the solution:

u(x , t) = A0+
∞

∑

n=1

exp
(

−n2π2

L2 kt
)(

An cos nπx
L

+Bn sin nπx
L

)

.



2-dimensional heat equation

∂u

∂t
= k

(∂2u

∂x2
+

∂2u

∂y 2

)

, (x , y) ∈ D,

u(x , y , 0) = f (x , y), (x , y) ∈ D,

Boundary condition: u|∂D = 0,

i.e., u(x , y , t) = 0 for (x , y) ∈ ∂D.

(Dirichlet condition)

Alternative boundary condition:
∂u

∂n

∣

∣

∣

∂D
= 0,

where ∂u
∂n

= ∇u · n is the normal derivative.

(Neumann condition)



First we need to solve an eigenvalue problem:

∇2φ = −λφ, φ|∂D = 0.

(Dirichlet Laplacian)

There exist infinitely many eigenvalues 0 < λ1 ≤ λ2 ≤ . . .

The associated eigenfunctions φ1(x , y), φ2(x , y), . . . can be
chosen so that they are orthogonal relative to the inner
product

〈f , g〉 =

∫∫

D

f (x , y)g(x , y) dx dy .

To solve the initial-boundary value problem for the heat
equation, expand the initial data f in the eigenfunctions:

f =
∑∞

n=1

cnφn, cn =
〈f , φn〉
〈φn, φn〉

.

Then
u(x , y , t) =

∑∞

n=1

cne
−λnktφn(x , y).



Example.

∇2φ = −λφ in D = {(x , y) | 0 < x < L, 0 < y < H},
φ(0, y) = φ(L, y) = 0, φ(x , 0) = φ(x , H) = 0.

This problem can be solved by separation of variables.

Eigenfunctions φnm(x , y) = sin nπx
L

sin mπy

H
, n, m ≥ 1.

Corresponding eigenvalues: λnm = (nπ
L

)2 + (mπ
H

)2.

The expansion in eigenfunctions of the Dirichlet
Laplacian in a rectangle is called the double

Fourier sine series.



Eigenvalues of the Laplacian in a circle

Eigenvalue problem:

∇2φ + λφ = 0 in D = {(x , y) : x2 + y 2 ≤ R2},
φ|∂D = 0.

In polar coordinates (r , θ):

∂2φ

∂r 2
+

1

r

∂φ

∂r
+

1

r 2

∂2φ

∂θ2
+ λφ = 0

(0 < r < R , −π < θ < π),

φ(R , θ) = 0 (−π < θ < π).



Additional boundary conditions:

|φ(0, θ)| < ∞ (−π < θ < π),

φ(r ,−π) = φ(r , π), ∂φ
∂θ (r ,−π) = ∂φ

∂θ (r , π) (0 < r < R).

Separation of variables: φ(r , θ) = f (r)h(θ).
Substitute this into the equation:

f ′′(r)h(θ) + r−1f ′(r)h(θ) + r−2f (r)h′′(θ) + λf (r)h(θ) = 0.

Divide by f (r)h(θ) and multiply by r 2:

r 2f ′′(r) + r f ′(r) + λr 2f (r)

f (r)
+

h′′(θ)

h(θ)
= 0.



It follows that

r 2f ′′(r) + r f ′(r) + λr 2f (r)

f (r)
= −h′′(θ)

h(θ)
= µ = const.

The variables have been separated:

r 2f ′′ + rf ′ + (λr 2 − µ)f = 0,

h′′ = −µh.

Boundary conditions φ(R , θ) = 0 and |φ(0, θ)| < ∞
hold if f (R) = 0 and |f (0)| < ∞.

Boundary conditions φ(r ,−π) = φ(r , π) and
∂φ
∂θ (r ,−π) = ∂φ

∂θ (r , π) hold if h(−π) = h(π) and
h′(−π) = h′(π).



Eigenvalue problem:

h′′ = −µh, h(−π) = h(π), h′(−π) = h′(π).

Eigenvalues: µm = m2, m = 0, 1, 2, . . . .
µ0 = 0 is simple, the others are of multiplicity 2.

Eigenfunctions: h0 = 1, hm(θ) = cos mθ and
h̃m(θ) = sin mθ for m ≥ 1.



Dependence on r :

r 2f ′′ + rf ′ + (λr 2 − µ)f = 0, f (R) = 0, |f (0)| < ∞.

We may assume that µ = m2, m = 0, 1, 2, . . . .
Also, we are only interested in the case λ > 0.

New variable z =
√

λ · r removes dependence on λ:

df

dr
=

√
λ

df

dz
,

d2f

dr 2
= λ

d2f

dz2
.

z2
d2f

dz2
+ z

df

dz
+ (z2 − m2)f = 0

This is Bessel’s differential equation of order m.
Solutions are called Bessel functions of order m.



z2
d2f

dz2
+ z

df

dz
+ (z2 − m2)f = 0

Solutions are well behaved in the interval (0,∞).

Let f1 and f2 be linearly independent solutions.
Then the general solution is f = c1f1 + c2f2, where
c1, c2 are constants.

We need to determine the behavior of solutions as
z → 0 and as z → ∞.

In a neighborhood of 0, Bessel’s equation is a small
perturbation of the equidimensional equation

z2
d2f

dz2
+ z

df

dz
− m2f = 0.



Equidimensional equation:

z2
d2f

dz2
+ z

df

dz
− m2f = 0.

For m > 0, the general solution is
f (z) = c1z

m + c2z
−m, where c1, c2 are constants.

For m = 0, the general solution is
f (z) = c1 + c2 log z , where c1, c2 are constants.

We hope that Bessel functions are close to solutions
of the equidimensional equation as z → 0.



Theorem For any m > 0 there exist Bessel
functions f1 and f2 of order m such that

f1(z) ∼ zm and f2(z) ∼ z−m as z → 0.

Also, there exist Bessel functions f1 and f2 of order
0 such that

f1(z) ∼ 1 and f2(z) ∼ log z as z → 0.

Remarks. (i) f1 and f2 are linearly independent.

(ii) f1 is determined uniquely while f2 is not.



Jm(z): Bessel function of the first kind,

Ym(z): Bessel function of the second kind.

Jm(z) and Ym(z) are certain linearly independent
Bessel functions of order m.

Jm(z) is regular while Ym(z) has singularity at 0.

Jm(z) and Ym(z) are special functions.

As z → 0, we have for m > 0

Jm(z) ∼ 1

2m m!
zm, Ym(z) ∼ −2m(m − 1)!

π
z−m.

Also, J0(z) ∼ 1, Y0(z) ∼ 2

π
log z .



Bessel functions of the 1st and 2nd kind



Jm(z) is uniquely determined by its asymptotics as
z → 0. Original definition by Bessel:

Jm(z) =
1

π

∫ π

0

cos(z sin τ − mτ) dτ .

Behavior of the Bessel functions as z → ∞ does
not depend on the order m. Any Bessel function f

satisfies

f (z) = Az−1/2 cos(z − B) + O(z−1) as z → ∞,

where A, B are constants.

The function f is uniquely determined by A, B , and
its order m.


