MATH 311
Topics in Applied Mathematics

Lecture 25:
Bessel functions (continued).



Bessel’s differential equation of order m > O:

, d2fdf )
F+ZE+(Z —m)f:O

The equation is considered on the interval (0, 00).
Solutions are called Bessel functions of order m.

Jn(z): Bessel function of the first kind,
Ym(z): Bessel function of the second kind.

The general Bessel function of order m is
f(z) = adn(z) + &2 Ym(2), where ¢, ¢, are
constants.



Bessel functions of the 1st and 2nd kind




Asymptotics at the origin
JIm(2) is regular while Y,,(z) has a singularity at 0.

As z — 0, we have for any integer m > 0

2"(m—-1)!
Im(2) ~ o m| v Y(z) ~ B .
2
Also, Jo(z) ~1, Yo(z) ~ —logz.
T

To get the asymptotics for a noninteger m, we
replace m! by ['(m + 1) and (m — 1)! by ['(m).

Jm(2) is uniquely determined by this asymptotics
while Y,,(z) is not.



Asymptotics at infinity

As z — oo, we have

\/; z———%) +0(z7Y),

Yn(z) = 2 z—z—m>+0(z h).

7TZ 2

Both J,(z) and Y,,(z) are uniquely determined by
this asymptotics.

For m =1/2, these are exact formulas.



Original definition by Bessel (only for integer m):

1 ™
Im(2) = —/ cos(zsinT — mr) dt
T Jo
I : /M. :
= —/ cos(z sin ) cos(m) d7'+—/ sin(zsin7) sin(m7) dr.
™ Jo ™ Jo

The first integral is 0 for any odd m while the
second integral is O for any even m. It follows that

cos(zsinT) )+2 Z Jon(z) cos(2nT7),

sin(zsinT —22 Jon-1(2) sin((2n — 1)7).



Zeros of Bessel functions

Let 0 < jm1 < Jjm2 < ... be zeros of J,(z) and
0 < Ymi<Ym2<... bezerosof Yp,(z).

Let 0 < i1 <Jma < ... be zeros of Jj (z) and
0 < y¥pm1 < Yma < ... bezeros of Y, (z2).
(We let jo; = 0 while j;, ; > 0if m>0.)
Then the zeros are interlaced:
M < jp1 < Ym1 < Ym1 <Jm1 <
<Jma < Ym2 < Yo <Jm2 < ...

Asymptotics of the nth zeros as n — oc:

.jr/n7n ~ _)/m,n ~ (n + %m o %)ﬂ-'

yr/n,n R Jmn ~ (n+ %m - %)W-



Dirichlet Laplacian in a circle
Eigenvalue problem:
V2p+Xp=0 in D={(x,y): x>+ y> < R?},
Plap = 0.

Separation of variables in polar coordinates:
o(r,0) = f(r)h(6). Reduces the problem to two
one-dimensional eigenvalue problems:

rPf" 4 rf + (A —pu)f =0, f(R)=0, |f(0)| < oc;

W = —uh,  h(—7) = h(r), H(—7) = K().

The latter problem has eigenvalues p,, = m?,

m=0,1,2,..., aNnd eigenfunctions hy = 1,
hm(0) = cos ml, hy(0) = sinmé, m > 1.



The 1st intermediate eigenvalue problem:
rPf" 4+ rf' + (Ar = m?)f =0, f(R) =0, |f(0)] < oo.

New variable z = v/\ - r reduces the equation to
Bessel's equation of order m. Hence the general
solution is f(r) = cidn(VAr) + @ Yn(vV A7),
where ¢y, ¢, are constants.

Singular condition |f(0)| < oo holds if ¢; = 0.
Nonzero solution exists if J,(vAR) = 0.

Thus there are infinitely many eigenvalues A, 1, Apo, ...,

where \/Amn R = jmn 1€, Amn = (jm7,,/R)2.
Associated eigenfunctions: fy, n(r) = Jm(Um.n r/R).



The eigenfunctions £, ,(r) = Ju(mnr/R) are
orthogonal relative to the inner product

(f,g), = /o f(r)g(r)rdr.

Any piecewise continuous function g on [0, R] is
expanded into a Fourier-Bessel series

o0 fmn r
g(f) = anl Cn Jm (jm,n %)v Ch = <7<(f,;,—f,;7,i>r'

that converges in the mean (with weight r).
If g is piecewise smooth, then the series converges
at its points of continuity.



Eigenvalue problem:
V2p+Xp=0 in D={(x,y): x>+ y? < R?},
Plap = 0.

Eigenvalues: )\, = (jmn/R)?, where
m=20,1,2,...,n=1,2,..., and jp , is the nth
positive zero of the Bessel function J,,.
Eigenfunctions: ¢ ,(r,0) = Jb(jo.n r/R).
Form>1, ¢mn(r,0) = Jn(mnr/R)cosmbd and
Gmn(r,0) = J(im.n r/R) sin mé.



Neumann Laplacian in a circle
Eigenvalue problem:
V2p+Xp=0 in D={(x,y): x>+ y> < R?},
% ’6D: 0.
Again, separation of variables in polar coordinates,
o(r,0) = f(r)h(8), reduces the problem to two
one-dimensional eigenvalue problems:
rPf" +rf' + (Ar* —u)f =0, f'(R)=0, |f(0)] < o0;
W' = —uph, h(—m) = h(r), h'(—=n) = W (r).

The 2nd problem has eigenvalues 1, = m?,

m=0,1,2,..., aNnd eigenfunctions hy = 1,
hm(0) = cos ml, hy,(0) = sinmé, m > 1.



The 1st one-dimensional eigenvalue problem:
PP+ +(Ar? —m?)f =0, f(R)=0, |f(0)| < oo.

For A > 0, the general solution of the equation is
F(r) = cadm(VAr) + 2 Yn(V 1), where ¢, ; are
constants.

Singular condition |f(0)| < oo holds if ¢; = 0.
Nonzero solution exists if J' (v/AR) = 0.

Thus there are infinitely many eigenvalues A\, 1, Ao, ...,

where \/Ap, R =j, . ie, Apn= (j,’n’n/R)z.
Associated eigenfunctions: fy, o(r) = Jm(jp,, r/R).

A = 0 is an eigenvalue only for m = 0.



Eigenvalue problem:

V2¢p+Xp=0 in D=1{(x,y): x>+ y?> < R?},

0| _

on lap

Eigenvalues: )\, = (ji,,/R)* where
m=0,1,2,...,n=1,2,..., and j,, , is the nth
positive zero of J;, (exception: jo; = 0).
Eigenfunctions: ¢ ,(r,0) = Jo(jg, r/R).
In particular, ¢g1 = 1.
For m>1, ¢ma(r,0) = Jn(n,r/R)cosmt and
Gmn(r,0) = In( mn r/R)sinmo.



Laplacian in a circular sector

Eigenvalue problem:
V2p+Ap=0in D={(r,0):r<R, 0<6<L},
¢lap = 0.
Again, separation of variables in polar coordinates,
o(r,8) = f(r)h(6), reduces the problem to two
one-dimensional eigenvalue problems:

P+ rf' + (A2 —p)f =0, £(0)=f(R)=0;

W' = —uh, h(0) = h(L) = 0.

The 2nd problem has eigenvalues i, = (%)2

m=1,2,..., and eigenfunctions h,(0) = sin 2,



The 1st one-dimensional eigenvalue problem:
2"+ rf +(Ar> —12)f =0, £(0)=f(R)=0.

Here 12 = 1. We may assume that A > 0.
The general solution of the equation is

f(r)= clJ,,(\/X r)+ ¢ Yy(\ﬂ r), where ¢, ¢, are

constants.

Boundary condition f(0) = 0 holds if ¢, = 0.

Nonzero solution exists if J,(vAR) = 0.
Thus there are infinitely many eigenvalues Ay, 1, Amo, . ..

where \/AnnR=jun i€, Amn= (vn/R)?.

Associated eigenfunctions: fy, ,(r) = J,(ju.n r/R).

Note that v = mn /L.



Eigenvalue problem:
V2p+Ap=0in D={(r,0):r<R,0<0<L}
Plop = 0.

Eigenvalues: )\, , = (juz »/R)® where
m=12...,n=12,..., and jmz , is the nth
positive zero of the Bessel function Jmz.

Eigenfunctions:
1. 0) = Je .- 1/R) sin Z2.



