MATH 311-505/506 Fall 2009

Sample problems for Test 1: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (15 pts.)  Find the point of intersection of the planes = + 2y — z = 1,
x—3y=—5,and 2z +y + 2z = 0 in R3,

The intersection point (x,y, z) is a solution of the system

r+2y—z=1,
r — 3y = —5,
2z4+y+2=0.

To solve the system, we convert its augmented matrix into reduced row echelon form using elementary

row operations:

1 2 -1 1 1 2 -1 1 1 2 -1 1 1 2 -1 1
1 -3 0|-5|]—({0 -5 1|-6]—]|0 -5 1/-6]—-]0 -3 3|2
2 1 1| 0 2 1 1| 0 0 -3 3|-2 0 -5 1|-6
12 -1 1 12 -1] 1 12 -1]1
—10 1 -1 2| =01 -1| 2|—=f0 1 —1|2
8 2
0 -5 1|-6 00 —4|-8 00 1|2
12 -1]1 12 0|2 10 0|-1
—101 o|3]|—=]010/2[—>f010] 2
2 2 2
0 0 2 0 1|3 00 1| 2

Thus the three planes intersect at the point (—1, %, %)

Alternative solution: The intersection point (z,y, z) is a solution of the system

r+2y—z=1,
r — 3y = —5,
20 +y+2=0.
Adding all three equations, we obtain 4x = —4. Hence x = —1. Substituting x = —1 into the second
equation, we obtain y = %. Substituting z = —1 and y = % into the third equation, we obtain z = %
It is easy to check that x = —1, y = %, z = % is indeed a solution of the system. Thus (—1, %, %) is
the unique intersection point.
1 -2 4 1
2 3 2 0
Probl 2 (25 pts.) Let A=
roblem 2 (25 pts.) Let 5 0 -1 1
2 0 01

(i) Evaluate the determinant of the matrix A.



First let us subtract 2 times the fourth column of A from the first column:

1 -2 41 -1 -2 41
2 3 20 | 2 3 20
2 0 -1 1| | 0 0 -1 1
2 0 01 0 0 01

Now the determinant can be easily expanded by the fourth row:

-1 -2 41

2 3 20 -2

=/ 2 3 2
0 0 —-1 1 0 o0 -1
0 0 01

The 3 x 3 determinant is easily expanded by the third row:
-1 -2 4

2 3 2 :(—1)‘_; _3‘
0 0 -1
Thus
-1 -2
detA——’ 5 3 =—1.

Another way to evaluate det A is to reduce the matrix A to the identity matrix using elementary
row operations (see below). This requires much more work but we are going to do it anyway, to find
the inverse of A.

(ii) Find the inverse matrix A~

First we merge the matrix A with the identity matrix into one 4 x 8 matrix

1 -2 4 1|1 0 0 O
2 3 200100
(A1) = 2 0 -1 1{0 0 1 0
2 0 01]0 0 01

Then we apply elementary row operations to this matrix until the left part becomes the identity
matrix.
Subtract 2 times the first row from the second row:

1 -2 4 11 0 0 O 1 -2 4 1 1 0 0 O
2 3 2 0/0 1 0 O _ 0 7 -6 -2|-2 1 0 0
2 0 -1 1/0 0 1 0O 2 0 -1 1 0010
2 0 0O 1/0 0 0 1 2 0 0 1 00 01
Subtract 2 times the first row from the third row:
1 -2 4 1 1 0 0 O 1 -2 4 1 1 0 0 O
0 7 -6 -2(-2 1 0 0 0 7 -6 -2(-2 1 0 0
2 0 -1 1 0 01 0 0 4 -9 —-11-2 01 0
2 0 0 1 00 01 2 0 0 1 0 0 0 1
Subtract 2 times the first row from the fourth row:
1 -2 4 1 1 0 0 O 1 -2 4 1 1 0 0 O
0 7 -6 —2|-2 1 0 0 0 7 -6 -2(-2 1 0 O
0 4 -9 —-1|1-2 0 1 0 0 4 -9 —-1/-2 0 1 0
2 0 0 1 00 0 1 0 4 -8 —-1|-2 0 0 1




Subtract 2 times the fourth row from the second row:

0
-2
NE
1
0
-2
-1
1

4 1 1 0 00 1 -2 4 1 0 0
-6 -2|-2 1 0 O) - (0 -1 10 0| 2 1 O
-9 —-1|-2 01 0 0 4 -9 —-1]-2 0 1
-8 —-1|-2 0 0 1 0 4 -8 -1|{-2 0 O

-2
7
4
4

1
0
0
0

Subtract the fourth row from the third row:

1 -2 4 1 0
0 -1 10 0| 2 1 O
0 0 -1 0| 001
0 4 -8 -1|-2 0 O
)H(
H

-2 0 1
Add 10 times the third row to the second row:

4 1
10 O
-9 -1
-8 —-1{-2 0 0

-2
-1
4
4

1
0
0
0

Add 4 times the second row to the fourth row:
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Add 32 times the third row to the fourth row:

i)

0
0
1

4 1|11 0
10 0]2 1

1 0(0 O

0 -1|6 4 32

-2
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0
0

1
0
0
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0
-2
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0 -1 00 0 1
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0
0
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Add 4 times the third row to the first row:
Subtract 2 times the second row from the first row:

Add the fourth row to the first row:



Multiply the second, the third, and the fourth rows by —1:

10 0 03 2 16 -19 1000 3 2 16 -19
0o -1 0 02 1 10 —-12 0100-2 -1 —-10 12
0o 0 -1 o0/oo 1 —-1] loo1o0] 0 0 -1 1
0 0 0 —-1]6 4 32 -39 0001|-6 —4 =32 39

Finally the left part of our 4 x 8 matrix is transformed into the identity matrix. Therefore the
current right part is the inverse matrix of A. Thus

-1

1 -2 41 3 2 16 —19
|2 3 20| _f-2 -1 -0 12
2 0 -1 1 0o 0 -1 1
2 0 0 1 —6 -4 —32 39

As a byproduct, we can evaluate the determinant of A. We have transformed A into the identity
matrix using elementary row operations. These included no row exchanges and three row multiplica-
tions, each time by —1. It follows that det I = (—1)3det A. Hence det A = —det ] = —1.

Problem 3 (20 pts.) Determine which of the following subsets of R? are subspaces.
Briefly explain.

(i) The set Sy of vectors (z,y, z) € R? such that zyz = 0.

(ii) The set Sy of vectors (x,y, 2) € R? such that z +y + z = 0.

(iii) The set S3 of vectors (z,y, z) € R? such that y* + 22 = 0.

(iv) The set Sy of vectors (z,y, z) € R? such that y* — 2% = 0.

A subset of R3 is a subspace if it is closed under addition and scalar multiplication. Besides, a
subspace must not be empty.

It is easy to see that each of the sets S, Sa, S3, and Sy contains the zero vector (0,0,0) and all
these sets are closed under scalar multiplication.

The set S is the union of three planes z = 0, y = 0, and z = 0. It is not closed under addition as
the following example shows: (1,1,0) + (0,0,1) = (1,1,1).

So is a plane passing through the origin. Obviously, it is closed under addition.

The condition 32+ 2z? = 0 is equivalent to y = z = 0. Hence Sj3 is a line passing through the origin.
It is closed under addition.

Since y? — 2% = (y — 2)(y + z), the set Sy is the union of two planes y — 2z = 0 and y + z = 0. The
following example shows that S4 is not closed under addition: (0,1,1)+ (0,1, —1) = (0,2,0).

Thus S and S3 are subspaces of R? while S; and S, are not.

0 -1 4 1
1 1 2 —1
Problem 4 (30 pts.) Let B=| . | |
2 -1 0 1

(i) Find the rank and the nullity of the matrix B.

The rank (dimension of the row space) and the nullity (dimension of the nullspace) of a matrix
are preserved under elementary row operations. We apply such operations to convert the matrix B
into row echelon form.



First interchange the first row with the second row:

0 -1 4 1
1 1 2 -1
-3 0 -1 0

2 -1 0 1

Add 3 times the first row to the third row, then subtract 2 times the first row from the fourth row:

1 1 2 -1 1 1 2
0 -1 4 1 0 -1 4
—
-3 0 -1 0 0 3 5
2 -1 0 1 2 -1 0
Multiply the second row by —1:
1 1 2 -1 1
0 -1 4 1 0
—
0 3 5 -3 0
0 -3 —4 3 0
Add the fourth row to the third row:
1 1 2 -1 1
0 1 -4 -1 0
—
0 3 5 -3 0
0 -3 —4 3 0
Add 3 times the second row to the fourth row:
1 1 2 -1 1
0 1 -4 -1 0
—
0 0 1 0 0
0 -3 —4 3 0

Add 16 times the third row to the fourth row:

|
|

11 2 — 1

01 -4 - 0
—

0 0 1 0 0

00 —-16 O 0

-1
1

SO = =

OO = =

2
—4
1
0

1 1 2 -1
0o -1 4 1
0o 3 5 -3
0 -3 -4 3

—1
—1

—1
—1

—1
-1

-1
-1
0
0

Now that the matrix is in row echelon form, its rank equals the number of nonzero rows, which is

3. Since

(rank of B) + (nullity of B) = (the number of columns of B) = 4,

it follows that the nullity of B equals 1.

(ii) Find a basis for the row space of B, then extend this basis to a basis for R%.

The row space of a matrix is invariant under elementary row operations. Therefore the row space
of the matrix B is the same as the row space of its row echelon form

11 2 -
01 —4 -
00 1
00 O

1
1
0
0



The nonzero rows of the latter are linearly independent so that they form a basis for its row space.
Hence the vectors vi = (1,1,2,—1), vo = (0,1, —4,—1), and vs = (0,0, 1,0) form a basis for the row
space of B.

To extend the basis vi,va, Vs to a basis for R, we need a vector v4 € R?* that is not a linear
combination of vi,vo, vs. It is known that at least one of the vectors e; = (1,0,0,0), ex = (0,1,0,0),
es = (0,0,1,0), and e4 = (0,0,0,1) can be chosen as v4. In particular, the vectors vi, vy, vs, es form
a basis for R*. This follows from the fact that the 4 x 4 matrix whose rows are these vectors is not
singular:

11 2 -1
01 -4 -1
00 1 O =170
00 o0 1

(iii) Find a basis for the nullspace of B.

The nullspace of B is the solution set of the system of linear homogeneous equations with B as
the coefficient matrix. To solve the system, we convert the matrix B to reduced row echelon form.
The row echelon form of B has been obtained earlier:

11 2 -1
01 —4 -1
00 1 0
00 0 O

Add 4 times the third row to the second row, then subtract 2 times the third row from the first row:

1 1 2 —1 11 2 -1 11 0 -1
01 —4 -1 01 0 -1 01 0 -1
— —

00 1 0 0 0 1 0 0 0 1 0
00 0 0 0 00 0 0 0O 0

Subtract the second row from the first row:
1 1 0 -1 1 00 0
01 0 -1 01 0 -1
—
0 0 1 0 0 0 1 0
0 0O 0 00O 0

We have obtained the reduced row echelon form of the matrix B. Its nullspace is the same as the
nullspace of B. Hence a vector (z1, 2,23, 24) € R* belongs to the nullspace of B if and only if

1‘120, 33120,
To—x4 =0, <= To = X4,
1‘3:0 .’E3:O.

The general solution of this system is (z1,z9,z3,24) = (0,¢,0,¢) = t(0,1,0,1), ¢t € R. Thus the
nullspace of the matrix B is spanned by the vector (0,1,0,1). This vector forms a basis for the
nullspace.



Bonus Problem 5 (15 pts.)  Show that the functions fi(x) = z, fo(x) = ze®, and
fs(z) = e™* are linearly independent in the vector space C*(R).

Suppose that afi(z) + bfa(x) + cfs(z) = 0 for all x € R, where a,b, ¢ are constants. We have to
show that a =b=c=0.
Differentiating the identity afi(x)+bf2(x)+cfs(x) = 0 four times, we obtain four more identities:

ax + bxe* 4+ ce™* =0,
a+ be® + bre® —ce™™ =0,
2be” + bze® + ce™* = 0,
3be” 4 bre® — ce”" = 0,
4be” + bre® 4+ ce™* = 0.

Subtracting the third identity from the fifth one, we obtain 2be* = 0, which implies that b = 0.
Substituting b = 0 in the third identity, we obtain ce™ = 0, which implies that ¢ = 0. Substituting
b =0 and ¢ = 0 in the second identity, we obtain a = 0.

T =0 for all x € R, where a, b, c are constants.

Alternative solution: Suppose that ax + bre® + ce™
We have to show that a =b = ¢ = 0.

For any = # 0 divide both sides of the identity by ze®:
ae™ +b+cx e =0,

Note that e™® — 0 and 7 'e™?* — 0 as # — +oo. Hence the left-hand side approaches b as © — 400.
It follows that b = 0. Now az + ce™ = 0 for all x € R. For any = # 0 divide both sides of the latter
identity by x:

a+cx e ® =0.

Since 27 te™® — 0 as © — 400, the left-hand side approaches a as z — 4o00. It follows that a = 0.

Then ce™™ = 0, which implies that ¢ = 0.

Bonus Problem 6 (15 pts.) Let V be a finite-dimensional vector space and Vj be a
proper subspace of V' (where proper means that Vj # V). Prove that dim Vj < dim V.

Any linearly independent set in a vector space can be extended to a basis. Since the vector space
V' is finite dimensional, it does not admit infinitely many linearly independent vectors. Clearly, the
same is true for the subspace Vj. It follows that Vj is also finite-dimensional.

Let vi,va,..., vy be a basis for V. The vectors v, va,..., vy are linearly independent in V since
they are linearly independent in V. Therefore we can extend this collection of vectors to a basis for
V by adding some vectors wi, ..., w,,. As Vg # V, we do need to add some vectors, i.e., m > 1. Thus
dimVy =k and dimV =k +m > k.



