MATH 311-503/505 Fall 2015

Sample problems for the final exam: Some solutions

Any problem may be altered or replaced by a different one!

Problem 1 Find the point of intersection of the planes x +2y — 2 =1, x — 3y = —5, and
2z +y+2=0in R3.

The intersection point (x,y, z) is a solution of the system

T+2y—z=1,
r— 3y = —b,
2r+y+2=0.

To solve the system, we convert its augmented matrix into reduced row echelon form using elementary

row operations:

1 2 -1 1 1 2 -1 1 1 2 -1 1 1 2 —1 1
1 -3 0|5 —=10 -5 1{-6]—=10 =5 1{-6]—=10 =3 3| -2
2 1 1 0 2 1 1 0 0 -3 3|-2 0 -5 1]—-6
1 2 —1 1 1 2 -1 1 1 2 —-1]1
-0 1 -1 2] —>f0o1 -1 2|=|01 -1|3
8 2
0 -5 1|6 00 —4|-8 00 1|2
12 -1]1 12 0]2 10 0|-1
4 4 4
o1 ol4|=]o1old]l=]01 0| 4
2 2 2
0 0 2 0 12 00 1] 2
Thus the three planes intersect at the point (—1, %, %)

Alternative solution: The intersection point (x,y, z) is a solution of the system

r4+2y—z=1,

r— 3y = —b,

2r +y+2z=0.
Adding all three equations, we obtain 4z = —4. Hence x = —1. Substituting £ = —1 into the second
equation, we obtain y = %. Substituting z = —1 and y = % into the third equation, we obtain z = %
It is easy to check that z = —1, y = %, z = % is indeed a solution of the system. Thus (—1, %, %) is

the unique intersection point.

Problem 2 Consider a linear operator L : R® — R? given by
L(v) = (v-vy)vy, where vy =(1,1,1), vo = (1,2,2).

(i) Find the matrix of the operator L.



Given v = (,y, z) € R3, we have that v-v; = z+y+zand L(v) = (z+y+z, 2(z+y+2), 2(x+y+2)).
Let A denote the matrix of the linear operator L. The columns of A are vectors L(e;), L(ez2), L(es),
where e; = (1,0,0), e; = (0,1,0), e3 = (0,0,1) is the standard basis for R3. Therefore

A=12 2 2
2 2 2

(ii) Find the dimensions of the range and the kernel of L.

The range Range(L) of the linear operator L is the subspace of all vectors of the form L(v), where
v € R3. It is easy to see that Range(L) is the line spanned by the vector vo = (1,2,2). Hence
dim Range(L) = 1.

The kernel ker(L) of the operator L is the subspace of all vectors x € R? such that L(x) = 0.
Clearly, L(x) = 0 if and only if x - vi = 0. Therefore ker(L) is the plane z + y + z = 0 orthogonal to
v1 and passing through the origin. Its dimension is 2.

(iii) Find bases for the range and the kernel of L.

Since the range of L is the line spanned by the vector vy = (1,2,2), this vector is a basis for the
range. The kernel of L is the plane given by the equation x 4+ y + z = 0. The general solution of
the equation is x = —t — s, y = t, 2 = s, where t,s € R. It gives rise to a parametric representation
t(—1,1,0) 4+ s(—1,0,1) of the plane. Thus the kernel of L is spanned by the vectors (—1,1,0) and
(—1,0,1). Since the two vectors are linearly independent, they form a basis for ker(L).

Problem 3 Let v; = (1,1,1), vo = (1,1,0), and v3 = (1,0,1). Let L : R® — R3 be a
linear operator on R3 such that L(vy) = vy, L(vy) = v3, L(v3) = vy.
(i) Show that the vectors vy, vy, v3 form a basis for R3.

Let U be a 3 x 3 matrix such that its columns are vectors vi, vo, vs:

1 11
U=1110
1 01

To find the determinant of U, we subtract the second row from the first one and then expand by the
first row:

0 01
detU=1]1 1 0 :H (1)‘:—1.
1 01

Since det U # 0, the vectors vy, vs, vy are linearly independent. It follows that they form a basis for
R3.
(ii) Find the matrix of the operator L relative to the basis vy, vy, vs.

Let A denote the matrix of L relative to the basis vi,vs,v3. By definition, the columns of A are
coordinates of vectors L(vy), L(va), L(vs) with respect to the basis vi,va,vs. Since L(vy) = vy =
0vy + 1ve + 0vs, L(vy) = vy = 0vy + Ova + 1vs, L(v3) = vi = 1vy + 0va + Ovs, we obtain

0 01
A=|1 0 0
010



(iii) Find the matrix of the operator L relative to the standard basis.

Let S denote the matrix of L relative to the standard basis for R3. We have S = UAU !, where A
is the matrix of L relative to the basis vi, vy, vy (already found) and U is the transition matrix from
V1, Ve, V3 to the standard basis (the vectors v, vg, vs are consecutive columns of U):

0 01 111
A=(1 0 0], U=1110
010 1 01
To find the inverse U ™!, we merge the matrix U with the identity matrix I into one 3 x 6 matrix and
apply row reduction to convert the left half U of this matrix into I. Simultaneously, the right half I

will be converted into U~1:

11 1]1 00 11 1] 10 0 1 1 1] 10 0
win=(110/010|={00 -1/-110]=]0 0 —-1[-110
10 1/0 0 1 10 1] 00 1 0 -1 0|-1 0 1
1 1 1] 100 1 1 o] 010 1 0 0|l-111
10 -1 o|l-101)]—=f0 -1 o0o|/-101]=(0 -1 o0]-1 01
0 0 —1]-11 0 0 0 —1|-11 0 0 0 —-1|-1 1 0
1 00]-1 1 1
—l0 10} 1 0 —-1)=UU"
00 1| 1 =1 0
Thus
111 00 1\ /-1 1 1
S=UAU' =111 0 100 0 —1
1 01 01 0 1 -1 0
111 -1 1 1 1 0 0
=10 1 1 0 —-1]=1{o0 1
01 1 1 -1 0 2 —1 —1

Alternative solution: Let S denote the matrix of L relative to the standard basis e; = (1,0,0),e2 =
(0,1,0),e3 = (0,0,1). By definition, the columns of S are vectors L(e;), L(ez2), L(e3). It is easy to
observe that e = vi — v3, €3 = v — vy, and e = vo — €9 = —v; + vy + v3. Therefore

L(e1) = L(—vi1 +va+v3) = —L(v1) + L(v2) + L(v3) = —va + vz + vi = (1,0, 2),

L(e2) = L(Vl - V3) = L(Vl) - L(V3) =Vgy — V] = (0707 _1)7
L(eg) = L(Vl — V2) = L(Vl) — L(Vg) = V9o — V3 = (O, 1, —1).
Thus
1 0
S=10 0 1
2 -1 -1

Problem 4 Let B =

—_ = =
—_ = =
—_ = =



(i) Find all eigenvalues of the matrix B.
The eigenvalues of B are roots of the characteristic equation det(B — AI) = 0. We obtain that

I-x 1 1

det(B—X)=| 1 1-Xx 1 |=(1-X3=-301-X+2
1 11—

=(1=32+3X2 =X =31 -N+2=3\2-N=)2(3-)\).

Hence the matrix B has two eigenvalues: 0 and 3.

(ii) Find a basis for R? consisting of eigenvectors of B.

An eigenvector x = (x,y, z) of B associated with an eigenvalue X is a nonzero solution of the vector
equation (B — AI)x = 0. First consider the case A = 0. We obtain that

11 1 x 0
Bx=0<«< [1 1 1 y|=(0)] <= z+y+2=0.
1 11 z 0

The general solution is v = —t — s, y = t, 2 = s, where t,s € R. Equivalently, x = ¢(—1,1,0) +
s(—1,0,1). Hence the eigenspace of B associated with the eigenvalue 0 is two-dimensional. Tt is
spanned by eigenvectors vi = (—1,1,0) and vo = (—1,0,1).

Now consider the case A = 3. We obtain that

2 1 1\ [z 0
B-30)x=0 < [ 1 -2 1]||y]|=]0
1 1 -2/ \: 0

10 -1\ [z 0
— (o1 —1||lyl=(0] = {x_ZZQ
00 0/)\z 0 y—==0.

The general solution is x = y = z = ¢, where ¢t € R. In particular, v3 = (1,1,1) is an eigenvector of B

associated with the eigenvalue 3.
The vectors vi = (—1,1,0), vo = (—1,0,1), and v3 = (1,1,1) are eigenvectors of the matrix B.

They are linearly independent since the matrix whose rows are these vectors is nonsingular:

=3 0.

==
==
— = O

It follows that vi,va, v3 is a basis for R3.

(iii) Find an orthonormal basis for R? consisting of eigenvectors of B.

It is easy to check that the vector vs is orthogonal to vy and vs. To transform the basis vy, vo, vg
into an orthogonal one, we only need to orthogonalize the pair vi,vo. Using the Gram-Schmidt

process, we replace the vector vy by

Vo - Vi 1
= vy — =(-1,0,1) — =(-1,1 =(-1/2,—-1/2,1).
u AP Vl'VlVl ( 707 ) 2( ) 70) ( /7 /7 )



Now v1,u, vs is an orthogonal basis for R3. Since u is a linear combination of the vectors vi and vo,
it is also an eigenvector of B associated with the eigenvalue 0.
. \2! u V3 .
Finally, vectors w; = m, Wy = W, and wg = ﬂ form an orthonormal basis for R3
Vi1 u V3

consisting of eigenvectors of B. We get that ||vi]| = v/2, |Jul| = \/3/2, and |v3| = v/3. Thus

1 1 1
w; = —(—1,1,0), we=—=(-1,-1,2), w3=—(1,1,1).

V2 V6 V3

(iv) Find a diagonal matrix D and an invertible matrix U such that B = UDU™!.

The vectors vi = (—1,1,0), vo = (—1,0,1), and v3 = (1,1,1) are eigenvectors of the matrix B
associated with eigenvalues 0, 0, and 3, respectively. Since these vectors form a basis for R3, it follows
that B = UDU ™!, where

D=

o O O
o O O
w o O

-1
. U=| 1
0

_ O =
—_ =

Here U is the transition matrix from the basis v, vg, v to the standard basis (its columns are vectors
v1,Va,v3) while D is the matrix of the linear operator L : R3 — R3, L(x) = Bx with respect to the
basis v, va, V3.

Problem 5 Let V be a subspace of R* spanned by vectors x; = (1,1,0,0), xo = (2,0, —1, 1),
and x3 = (0,1,1,0).

(i) Find the distance from the point y = (0,0,0,4) to the subspace V.

(ii) Find the distance from the point y to the orthogonal complement V+.

The vector y is uniquely represented as y = p 4+ o, where p € V and o is orthogonal to V, that is,
o € V. The vector p is the orthogonal projection of y onto the subspace V. Since (Vl)l =V, the
vector o is the orthogonal projection of y onto the subspace V1. It follows that the distance from the
point y to V equals ||o|| while the distance from y to V+ equals ||p||.

The orthogonal projection p of the vector y onto the subspace V is easily computed when we have
an orthogonal basis for V. To get such a basis, we apply the Gram-Schmidt orthogonalization process
to the basis x1, X9, X3:

X2 V1

2
V] =X1 = (17 17070)7 V) =X — Vi = (2707 -1, 1) - 5(17 17070) = (17 -1,—1, 1)7

Vi -Vy

. . 1 -2
Vi =g = vy = 2Py = (0,1,1,0) - 5(1,1,0,0) = —=(1, -1, -1,1) = (0,0,1/2,1/2).

1
vi-Vvi1 V2 - V2
Now that vq,vg, vg is an orthogonal basis for V' we obtain
y Vo y V3
v

y-vi
= vy + 2+ V3 =
Vi-Vy Vo Vo V3 V3

p

0 4 2
= ~(1,1,0,0) + ~(1,-1,-1,1) + —=(0,0,1/2,1/2) = (1,~1,1,3).
2(777)+4(7 ) 7)+1/2(77/7/) (7 77)



Consequently, o =y — p = (0,0,0,4) — (1,—1,1,3) = (—1,1,—1,1). Thus the distance from y to the
subspace V equals |lo|| = 2 and the distance from y to V* equals |p|| = V12 = 2V/3.

Problem 6 Consider a vector field F(z,y, 2) = xyze; + xye; + r2es.
(i) Find curl(F).

s ol () aay dayz)  Oa?)
wl® =15 & =|=\oy "o )T Ta: e )
ryz vy
B )
+< ((‘i;y)_ (gzz)>e3:($y—2:n)e2—|—(y—xz)e3.

(i) Find the integral of the vector field curl(F) along a hemisphere H = {(x,y,2) € R? :
2?2 +y?+2%2 =1, 2z > 0}. Orient the hemisphere by the normal vector n = (0,0, 1) at the point
0

According to Stokes’ Theorem,

// curl(F) - dS = F - ds,
H OH

where the boundary OH is oriented consistently with H. The boundary is a circle, 0H = {(x,y, z) €
R3: 22 +y? =1, 2 = 0}. It is parametrized (with the right orientation) by a path x : [0,27] — R3,
x(t) = (cost,sint,0). We have F(x(t)) = (0,cost sint,cos?>t) and x'(t) = (—sint, cost,0). Therefore

2w

2T 2T
1
7{ F'ds:/F-ds:/ F(x(t))-x’(t)dt:/ cos’t sintdt = —=cos®t| =0.
OH x 0 0 3

Problem 7 Find the area of a pentagon with vertices (0, 0), (4,0), (5,2), (3,4), and (—1,2).

Segments (0,0) — (3,4) and (0,0) — (5,2) cut the pentagon into three triangles: A; with vertices
(0,0), (3,4), and (—1,2); Ay with vertices (0,0), (5,2), and (3,4); and Az with vertices (0,0), (4,0),
and (5,2). Since vectors vi = (3,4) and vy = (—1,2) are represented by two sides of the triangle Aj,
the area of that triangle equals %| det A;|, where

Ay = (vi,va) = (i g) .

Similarly, the area of the triangle Ay equals 3| det As| and the area of Ag equals 1| det As|, where

5 3 45
w=(39) =)

We obtain that det A; = 10, det As = 14, and det A3 = 8. Therefore the area of the pentagon equals
$(10 + 14 + 8) = 16.



