MATH 311

Topics in Applied Mathematics I
Lecture 19:
Range and kernel.
General linear equations. Matrix transformations.

Linear transformation

Definition. Given vector spaces V_{1} and V_{2}, a mapping $L: V_{1} \rightarrow V_{2}$ is linear if

$$
\begin{gathered}
L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y}), \\
L(r \mathbf{x})=r L(\mathbf{x})
\end{gathered}
$$

for any $\mathbf{x}, \mathbf{y} \in V_{1}$ and $r \in \mathbb{R}$.
Basic properties of linear mappings:

- $L\left(r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}\right)=r_{1} L\left(\mathbf{v}_{1}\right)+\cdots+r_{k} L\left(\mathbf{v}_{k}\right)$ for all $k \geq 1, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V_{1}$, and $r_{1}, \ldots, r_{k} \in \mathbb{R}$.
- $L\left(\mathbf{0}_{1}\right)=\mathbf{0}_{2}$, where $\mathbf{0}_{1}$ and $\mathbf{0}_{2}$ are zero vectors in V_{1} and V_{2}, respectively.
- $L(-\mathbf{v})=-L(\mathbf{v})$ for any $\mathbf{v} \in V_{1}$.

Range and kernel

Let V, W be vector spaces and $L: V \rightarrow W$ be a linear mapping.

Definition. The range (or image) of L is the set of all vectors $\mathbf{w} \in W$ such that $\mathbf{w}=L(\mathbf{v})$ for some $\mathbf{v} \in V$. The range of L is denoted $L(V)$.
The kernel of L, denoted $\operatorname{ker} L$, is the set of all vectors $\mathbf{v} \in V$ such that $L(\mathbf{v})=\mathbf{0}$.

Theorem (i) The range of L is a subspace of W.
(ii) The kernel of L is a subspace of V.

Example. $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & -1 \\ 1 & 0 & -1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
The kernel $\operatorname{ker}(L)$ is the nullspace of the matrix.

$$
L\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=x\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+y\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right)+z\left(\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right)
$$

The range $L\left(\mathbb{R}^{3}\right)$ is the column space of the matrix.

Example. $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & -1 \\ 1 & 0 & -1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
The range of L is spanned by vectors $(1,1,1),(0,2,0)$, and $(-1,-1,-1)$. It follows that $L\left(\mathbb{R}^{3}\right)$ is the plane spanned by $(1,1,1)$ and $(0,1,0)$.
To find $\operatorname{ker}(L)$, we apply row reduction to the matrix:

$$
\left(\begin{array}{rrr}
1 & 0 & -1 \\
1 & 2 & -1 \\
1 & 0 & -1
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Hence $(x, y, z) \in \operatorname{ker}(L)$ if $x-z=y=0$.
It follows that $\operatorname{ker}(L)$ is the line spanned by $(1,0,1)$.

Example. $L: C^{3}(\mathbb{R}) \rightarrow C(\mathbb{R}), \quad L(u)=u^{\prime \prime \prime}-2 u^{\prime \prime}+u^{\prime}$.
According to the theory of differential equations, the initial value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime}(x)-2 u^{\prime \prime}(x)+u^{\prime}(x)=g(x), \quad x \in \mathbb{R}, \\
u(a)=b_{0}, \\
u^{\prime}(a)=b_{1}, \\
u^{\prime \prime}(a)=b_{2}
\end{array}\right.
$$

has a unique solution for any $g \in C(\mathbb{R})$ and any $b_{0}, b_{1}, b_{2} \in \mathbb{R}$. It follows that $L\left(C^{3}(\mathbb{R})\right)=C(\mathbb{R})$.
Also, the initial data evaluation $I(u)=\left(u(a), u^{\prime}(a), u^{\prime \prime}(a)\right)$, which is a linear mapping $I: C^{3}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$, becomes invertible when restricted to $\operatorname{ker}(L)$. Hence $\operatorname{dim} \operatorname{ker}(L)=3$.
It is easy to check that $L\left(x e^{x}\right)=L\left(e^{x}\right)=L(1)=0$.
Besides, the functions $x e^{x}, e^{x}$, and 1 are linearly independent (use Wronskian). It follows that $\operatorname{ker}(L)=\operatorname{Span}\left(x e^{x}, e^{x}, 1\right)$.

General linear equations

Definition. A linear equation is an equation of the form

$$
L(\mathbf{x})=\mathbf{b}
$$

where $L: V \rightarrow W$ is a linear mapping, \mathbf{b} is a given vector from W, and \mathbf{x} is an unknown vector from V.

The range of L is the set of all vectors $\mathbf{b} \in W$ such that the equation $L(\mathbf{x})=\mathbf{b}$ has a solution.
The kernel of L is the solution set of the homogeneous linear equation $L(\mathbf{x})=\mathbf{0}$.

Theorem If the linear equation $L(\mathbf{x})=\mathbf{b}$ is solvable and $\operatorname{dim} \operatorname{ker} L<\infty$, then the general solution is

$$
\mathbf{x}_{0}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}
$$

where \mathbf{x}_{0} is a particular solution, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a basis for the kernel of L, and t_{1}, \ldots, t_{k} are arbitrary scalars.

Example. $\left\{\begin{array}{l}x+y+z=4, \\ x+2 y=3 .\end{array}\right.$
$L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
Linear equation: $L(\mathbf{x})=\mathbf{b}$, where $\mathbf{b}=\binom{4}{3}$.

$$
\begin{gathered}
\left(\begin{array}{lll|l}
1 & 1 & 1 & 4 \\
1 & 2 & 0 & 3
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 1 & 1 & 4 \\
0 & 1 & -1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 2 & 5 \\
0 & 1 & -1 & -1
\end{array}\right) \\
\left\{\begin{array} { l }
{ x + 2 z = 5 } \\
{ y - z = - 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=5-2 z \\
y=-1+z
\end{array}\right.\right.
\end{gathered}
$$

$$
(x, y, z)=(5-2 t,-1+t, t)=(5,-1,0)+t(-2,1,1)
$$

Example. $u^{\prime \prime \prime}(x)-2 u^{\prime \prime}(x)+u^{\prime}(x)=e^{2 x}$.
Linear operator $L: C^{3}(\mathbb{R}) \rightarrow C(\mathbb{R})$,
$L u=u^{\prime \prime \prime}-2 u^{\prime \prime}+u^{\prime}$.
Linear equation: $L u=b$, where $b(x)=e^{2 x}$.
We already know that functions $x e^{x}, e^{x}$ and 1 form a basis for the kernel of L. It remains to find a particular solution.
$L\left(e^{2 x}\right)=8 e^{2 x}-2\left(4 e^{2 x}\right)+2 e^{2 x}=2 e^{2 x}$.
Since L is a linear operator, $L\left(\frac{1}{2} e^{2 x}\right)=e^{2 x}$.
Particular solution: $u_{0}(x)=\frac{1}{2} e^{2 x}$.
Thus the general solution is

$$
u(x)=\frac{1}{2} e^{2 x}+t_{1} x e^{x}+t_{2} e^{x}+t_{3} .
$$

Matrix transformations

Any $m \times n$ matrix A gives rise to a transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $L(\mathbf{x})=A \mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^{n}$ and $L(\mathbf{x}) \in \mathbb{R}^{m}$ are regarded as column vectors. This transformation is linear.

Example. $L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 2 \\ 3 & 4 & 7 \\ 0 & 5 & 8\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
Let $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0), \mathbf{e}_{3}=(0,0,1)$ be the standard basis for \mathbb{R}^{3}. We have that $L\left(\mathbf{e}_{1}\right)=(1,3,0)$, $L\left(\mathbf{e}_{2}\right)=(0,4,5), \quad L\left(\mathbf{e}_{3}\right)=(2,7,8)$. Thus $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), L\left(\mathbf{e}_{3}\right)$ are columns of the matrix.

Problem. Find a linear mapping $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $L\left(\mathbf{e}_{1}\right)=(1,1), L\left(\mathbf{e}_{2}\right)=(0,-2)$, $L\left(\mathbf{e}_{3}\right)=(3,0)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ is the standard basis for \mathbb{R}^{3}.

$$
\begin{gathered}
L(x, y, z)=L\left(x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}\right) \\
=x L\left(\mathbf{e}_{1}\right)+y L\left(\mathbf{e}_{2}\right)+z L\left(\mathbf{e}_{3}\right) \\
=x(1,1)+y(0,-2)+z(3,0)=(x+3 z, x-2 y) \\
L(x, y, z)=\binom{x+3 z}{x-2 y}=\left(\begin{array}{rrr}
1 & 0 & 3 \\
1 & -2 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
\end{gathered}
$$

Columns of the matrix are vectors $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), L\left(\mathbf{e}_{3}\right)$.

Theorem Suppose $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map. Then there exists an $m \times n$ matrix A such that $L(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. Columns of A are vectors $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), \ldots, L\left(\mathbf{e}_{n}\right)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ is the standard basis for \mathbb{R}^{n}.

$$
\begin{gathered}
\mathbf{y}=A \mathbf{x} \Longleftrightarrow\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \\
\Longleftrightarrow\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=x_{1}\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right)+x_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right)+\cdots+x_{n}\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right)
\end{gathered}
$$

