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Lecture 34:
Green’s theorem.
Conservative vector fields.



Scalar line integral

Scalar line integral is an integral of a scalar function f over a
path x : [a, b] — R" of finite length relative to the arclength.
It is defined as a limit of Riemann sums

S(F,P.) = Y Fx(m) (s(t) — s(5-1).

where P = {ty, t1,..., tx} is a partition of [a, b],
€ [t;, ti_1] for 1 < j < k, and s is the arclength parameter
of the path x.

Theorem Let x: [a, b] — R" be a smooth path and f be a
function defined on the image of this path. Then

/fds_/ ) [1%(2)]] dt.

ds is referred to as the arclength element.



Vector line integral

Vector line integral is an integral of a vector field
over a smooth path. It is a scalar.

Definition. Let x : [a, b] — R" be a smooth path
and F be a vector field defined on the image of this

path. Then /F - ds = /b F(x(t))-x'(t) dt.

Alternatively, the integral of F over x can be
represented as the integral of a differential form

/FldX1+F2dX2+"'+Fnan,

X

where F = (F, F,, ..., F,) and dx; = x/(t) dt.



Line integrals and reparametrization

Given a path x: [a, b] — R”, we say that another path

y : [c,d] — R" is a reparametrization of x if there exists a
continuous invertible function v : [c,d] — [a, b] such that
y(t) = x(u(t)) for all t € [c,d].

The reparametrization may be orientation-preserving (when u
is increasing) or orientation-reversing (when u is decreasing).

Theorem 1 Any scalar line integral is invariant under
reparametrizations.

Theorem 2 Any vector line integral is invariant under
orientation-preserving reparametrizations and changes its sign
under orientation-reversing reparametrizations.

As a consequence, we can define the integral of a function
over a simple curve and the integral of a vector field over a
simple oriented curve.



Applications of line integrals

e Mass of a wire
If f is the density on a wire C, then [.f ds is the mass of C.

e Work of a force

If F is a force field, then fx F - ds is the work done by F on a
particle that moves along the path x.

e Circulation of fluid

If F is the velocity field of a planar fluid, then the circulation
of the fluid across a closed curve C is fc F - ds.

o Flux of fluid

If F is the velocity field of a planar fluid, then the flux of the
fluid across a closed curve C is fc F - nds, where n is the
outward unit normal vector to C.



Green’s Theorem

Theorem Let D C R? be a closed, bounded
region with piecewise smooth boundary 9D oriented
so that D is on the left as one traverses 0D. Then
for any smooth vector field F = (M, N) on D,

oN oM
F-ds:// (———)dxd
7{90 p \ Ox dy 4

or, equivalently,

de+Ndy:// (a—N—a—M>dxdy.
oD D Ox 8)/



Green’s Theorem

Proof in the case D =[0,1] x [0,1] and F = (0, N):

OaN(e y)de = N(Ly) — N(0, y)

for any y € [0,1] due to the Fundamental Theorem of
Calculus. Integrating this equality by y over [0, 1], we obtain

// d dy — /OIN(l,y)dy—/OlN(O,y)dy.

Let Pl = (0,0), P2 = (1,0), P3 = (1,1), and P4 = (0,1)
The first integral in the right-hand side equals the vector
integral of the field F over the segment P,P;. The second
integral equals the integral of F over the segment P;P,. Also,
the integral of F over any horizontal segment is 0. It follows
that the entire right-hand side equals the integral of F over
the broken line P;P>P3;P,P;, that is, over 9D.



Example

Consider vector fields F(x,y) = (—y,0),
G(x,y) = (0,x), and H(x,y) = (y,x).

According to Green's Theorem,

j{—ydx: //1dxdy:area(D),
oD D

% xdy://1dxdy:area(D),
oD D

% ydx+xdy://0dxdy:O.
oD D



Divergence Theorem

Theorem Let D C R? be a closed, bounded region with
piecewise smooth boundary 0D oriented so that D is on the
left as one traverses 0D. Then for any smooth vector field F

on D,
jl{ F-nds://V-FdA.
oD D

Proof: Let L denote the rotation of the plane R? by 90°
about the origin (counterclockwise). L is a linear
transformation preserving the dot product. Therefore

$,oF-nds= ¢, L(F)-L(n)ds.
Note that £(n) is the unit tangent vector to dD. It follows

that the right-hand side is the vector integral of £(F) over 0D.
If F=(M,N) then L(F)=(—N,M). By Green's Theorem,

)-
L’()ds—j{ —Ndx+ Mdy = / <8—M+86—N)dxdy.
oD

oD



Conservative vector fields

Let R be an open region in R” such that any two
points in R can be connected by a continuous path.
Such regions are called (arcwise) connected.

Definition. A continuous vector field F: R — R”
is called conservative if / F.-ds= / F-ds
G G

for any two simple, piecewise smooth, oriented
curves (C;, C; C R with the same initial and
terminal points.

An equivalent condition is that j{ F-ds=0
C

for any piecewise smooth closed curve C C R.



Conservative vector fields

Theorem The vector field F is conservative if and
only if it is a gradient field, that is, F = Vf for
some function f : R — R. If this is the case, then

/F-ds: F(B) — f(A)
C

for any piecewise smooth, oriented curve C C R
that connects the point A to the point B.

Remark. In the case F is a force field, conservativity
means that energy is conserved. Moreover, in this
case the function f is the potential energy.



Test of conservativity

Theorem If a smooth field F = (Fy, F, ..., F,) is

conservative in a region R C R", then the Jacobian matrix
O(Fi, Fa, ..., Fy)
O(X1, X2y« -+, Xn)

is symmetric everywhere in R, that is,
OF;  OF;
aXJ - (9x,-

for i #j.

Indeed, if the field F is conservative, then F = Vf for some

smooth function 7 : R — R. It follows that the Jacobian

matrix of F is the Hessian matrix of f, that is, the matrix of
oF; O*f

Ox;  Ox; 0x;

second-order partial derivatives:

Remark. The converse of the theorem holds provided that the
region R is simply-connected, which means that any closed
path in R can be continuously shrunk within R to a point.



Finding scalar potential
Example. F(x,y) = (2xy® + 3y cos 3x, 3x%y? + sin 3x).

The vector field F is conservative if 0F;/Jy = 0F,/0x.
F F,
OF _ 6xy? + 3 cos 3x, OF; _ 6xy? + 3 cos 3x.
dy Ox
Thus F = Vf for some function f (scalar potential of F),

f f
that is, or _ 2xy> + 3y cos 3x, or _ 3x2y? + sin 3x.
Ox dy

Integrating the second equality by y, we get
f(x,y)= /(3x2y2 +sin3x) dy = x*y> + ysin 3x + g(x).

Substituting this into the first equality, we obtain that
2xy> + 3y cos3x + g'(x) = 2xy® + 3y cos3x. Hence
g'(x) =0 so that g(x) = ¢, a constant. Then
f(x,y) = x2y® + ysin3x + c.



