MATH 311
Topics in Applied Mathematics |

Lecture 39:
Integration of differential forms.
Review for the final exam (continued).



Vector line and surface integrals

Any vector integral along a curve v C R" can be
represented as a scalar line integral:

/F-ds:/(F-t)ds,

where t is a unit tangent vector chosen according
to the orientation of the curve 7.

Any vector integral along a surface S C R? can be
represented as a scalar surface integral:

//SF-dS: //S(F-n)ds,

where n is a unit normal vector chosen according
to the orientation of the surface S.



k-forms

Let V be a vector space. Given an integer k > 0, a k-form
on V is a function w: VK — R such that

e w is multi-linear, which means that it depends linearly on
each of its k arguments; and

e w is anti-symmetric, which means that its value changes
the sign upon exchanging any two of the k arguments.

In particular, a O-form is just a constant, a 1-form is merely a
linear functional on V, and a 2-form is a bi-linear function
w:V xV — R such that w(v,u) = —w(u,v) for all

v,uec V.

Principal example. For any vectors vy, va, ..., v, € R" let
w(vy,...,V,) =det A, where A= (vy,...,v,) isan nxn
matrix whose consecutive columns are vectors vq,...,V,.

Then w is an n-form on R” (called the volume form).



Wedge product

Suppose wi,wo,...,wy are linear functionals on a vector
space V. The wedge product of these 1-forms, denoted
wi Awy A+ Awg, is a k-form on V defined by

wi(vi) wi(va) -+ wi(vk)
WA Aw(Ves - . vg) = w2(IV1) WZ(.W) s wo(vg)
wi(vi) wi(v2) -+ wk(vk)

Note that dependence of the wedge product wy Awy A+ -+ Awyg
on its factors is also multi-linear and anti-symmetric.

Now suppose V = R". Let &; denote a linear functional on
R" that evaluates the i-th coordinate for each vector. Then
the volume form from the previous slide is & A& A -+ A&,
The set of all k-forms on R”, denoted A*(R™)*, is a vector
space. It has a basis comprised of wedge products
f,‘l/\f,é/\"'/\f,'k, where 1 < i <ih<---<i<n.



Differential k-forms

Let U C R" be an open region. A differential k-form on U
is a field of k-forms from AX(R")*. Formally, its a mapping
w: U— N(R™)*.

Example. Consider a smooth function f : U — R (which is
an example of a differential 0-form). To each point p € U we
assign a linear functional v — D,f(p) (the derivative of f at
p). This defines a differential 1-form, which is denoted df.

Let x1,x>,...,x, be coordinates in R". Each x; can be
regarded a smooth function on U. Note that dx; is a constant
field: its value is &; at every point. It follows that any
differential k-form w on U is uniquely represented as

W = E Oy iy dX,'1 A dX,'2 VANRRIVAY dX,'k,
1<i<ipr<-<ix<n
where «;;, j are some functions on U and the wedge product
is pointwise. The form w is smooth if each o, ;, is smooth.



Integration of differential forms

Any continuous differential k-form w in a region U C R" can
be integrated over a smooth oriented k-dimensional
manifold in U.

Definition. Let R C R* be a connected, bounded region.

A continuous one-to-one map X : R — R" is called a
parametrized k-dimensional manifold. The parametrized
manifold is smooth if X is smooth and, moreover, the
Jacobian matrix of X has rank k at every point of R.

If Z
w = Oy iy dX,'1 A dX,'2 FANKIIAN dX,'k,
1<ii<ipr<-<ix<n
then

Xy -5 Xi,)
- i X(si,...,s det 222 Tk g/
/Xw Z/Ra (X(s1 %)) s

...,Sk)



Examples in R3. e Vector line integral

The integral of a vector field F = (Fy, F,, F3) along a curve
can be interpreted as the integral of a differential 1-form:

/F~ds:/F1dx+F2dy+F3dz.
Y Y
e Vector surface integral

The integral of a vector field F = (Fy, F,, F3) along a surface
S can be interpreted as the integral of a differential 2-form:

//F-dS://Fldy/\dZ+F2dz/\dx+F3dx/\dy.
S S

e Multiple integral

The integral of a function f over a region U C R3® can be
interpreted as the integral of a differential 3-form:

///ufd\/:///ufdx/\d)//\dz.



Exterior derivative

Let U C R" be an open region. The vector space of
differential k-forms on U is denoted Q*(U).

Theorem There exists a unique family of transformations
O QF(U) — Q(VU), k=0,1,2,..., such that

e cach Jy is linear,

e for any smooth function f on U, &y(f) = df,

e for any smooth functions f,g1,..., g« on U,

S(fdgr A---Ndgk) =df Ndgi A+ A dgk.

The differential form §,(w) is called the exterior derivative
of w and denoted dw.

Generalized Stokes’ Theorem For any smooth differential
k-form w on U and any bounded, oriented smooth
(k + 1)-dimensional manifold C C U,

/dwz% w.
c ac



Examples

e Differential 1-form in R2.

We have w = Mdx+ Ndy. Then

dw = d(Mdx) + d(N dy) = dM A dx + dN A dy
= <%—"X/’dx + %—"y/’dy) A dx + <‘g—’;’dx+ ‘g—’;’dy) A dy
:%—’\X”dx/\dx+%—"y”dy/\dxjtaa—')\(’dx/\dyjtaa—ydy/\dy

:%—"y/’dy/\dx%—‘g—’;’dx/\dy: <‘Z—')‘(’—%—"y/’>dx/\dy.

Hence in this case Generalized Stokes' Theorem yields Green's
Theorem:

de+Ndy://<a—N—a—M)dxdy.
aD p \ Ox dy



Examples

e Differential 1-form in R3.
We have w = Fydx+ F,dy + F3dz. Then

dw = (%—’;3—%) dyAdz + (ﬁ—%) dzAdx + <@—@> dxA\dy.

In this case Generalized Stokes' Theorem yields usual Stokes'’
Theorem.

e Differential 2-form in R3.
We have w=Fdy Ndz+ F,dz Adx+ F3dx Ady. Then

do= (22 + 22+ 95) de Ady A dz.

In this case Generalized Stokes’ Theorem yields Gauss’'
Theorem.



Area, volume, and determinants

e 2x2 determinants and plane geometry

Let P be a parallelogram in the plane R?. Suppose that
vectors vi, v, € R? are represented by adjacent sides of P.
Then area(P) = |det A|, where A = (v1,v,), a matrix whose
columns are vy and vs.

Consider a linear operator L4 : R? — R? given by

La(v) = Av for any column vector v. Then
area(La(D)) = |det A| area(D) for any bounded domain D.

e 3x3 determinants and space geometry

Let I be a parallelepiped in space R3. Suppose that vectors
Vi, Vs, v3 € R3 are represented by adjacent edges of 1. Then
volume() = |det B|, where B = (vi,v,,V3), a matrix whose
columns are vy, v,, and vs.

Similarly, volume(Lg(D)) = |det B| volume(D) for any
bounded domain D C R3.



S

Parallelepiped is a prism.

(Volume) = (area of the base) x (height)
Area of the base = |y x z|

Volume = |x - (y X 2)|



Tetrahedron is a pyramid.

(Volume) = 3 (area of the base) x (height)

Area of the base = 1 |y x z|

—>  Volume = £ [x - (y x 2)]



