Sample problems for Test 1

Any problem may be altered or replaced by a different one!

Problem 1 Find a quadratic polynomial $p(x)$ such that $p(1)=1, p(2)=3$, and $p(3)=7$.

Problem 2 Let A be a square matrix such that $A^{3}=O$.
(i) Prove that the matrix A is not invertible.
(ii) Prove that the matrix $A+I$ is invertible.

Problem 3 Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(i) Evaluate the determinant of the matrix A.
(ii) Find the inverse matrix A^{-1}.

Problem 4 Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.
(i) The set S_{1} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x y z=0$.
(ii) The set S_{2} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x+y+z=0$.
(iii) The set S_{3} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}+z^{2}=0$.
(iv) The set S_{4} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}-z^{2}=0$.

Problem 5 Let V denote the solution set of a system

$$
\left\{\begin{array}{l}
x_{2}+2 x_{3}+3 x_{4}=0 \\
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=0 .
\end{array}\right.
$$

Find a finite spanning set for this subspace of \mathbb{R}^{4}.

Problem 6 Show that the functions $f_{1}(x)=x, f_{2}(x)=x e^{x}$, and $f_{3}(x)=e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

