Sample problems for Test 3

Any problem may be altered or replaced by a different one!

Problem 1 Find curl $(\operatorname{curl}(\mathbf{F}))$, where $\mathbf{F}(x, y, z)=\left(x^{2}+y^{2}\right) \mathbf{e}_{1}+z e^{x+y} \mathbf{e}_{2}+(x+\sin y) \mathbf{e}_{3}$.

Problem 2 Evaluate a double integral

$$
\iint_{P}(2 x+3 y-\cos (\pi x+2 \pi y)) d x d y
$$

over a parallelogram P with vertices $(-1,-1),(1,0),(2,2)$, and $(0,1)$.

Problem 3 Find the area of a cardioid which boundary is given by $r=1-\cos \phi$ in polar coordinates.

Problem 4 Consider a vector field $\mathbf{F}(x, y, z)=\left(y z+2 \cos 2 x, x z-e^{z}, x y-y e^{z}\right)$.
(i) Verify that the field \mathbf{F} is conservative.
(ii) Find a function f such that $\mathbf{F}=\nabla f$.

Problem 5 Let C be a solid cylinder bounded by planes $z=0, z=2$ and a cylindrical surface $x^{2}+y^{2}=1$. Orient the boundary ∂C with outward normals and evaluate a surface integral

$$
\iint_{\partial C}\left(x^{2} \mathbf{e}_{1}+y^{2} \mathbf{e}_{2}+z^{2} \mathbf{e}_{3}\right) \cdot d \mathbf{S}
$$

Problem 6 Let D be a region in \mathbb{R}^{3} bounded by a paraboloid $z=x^{2}+y^{2}$ and a plane $z=9$. Let S denote the part of the paraboloid that bounds D, oriented by outward normals. Evaluate a surface integral

$$
\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}
$$

where $\mathbf{F}(x, y, z)=\left(e^{x^{2}+z^{2}}, x y+x z+y z, e^{x y z}\right)$.

