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Lecture 36:

Gauss’ theorem.

Stokes’ theorem.



Surface integrals

Let X : D → R
3 be a smooth parametrized surface, where

D ⊂ R
2 is a bounded region. Then for any continuous

function f : X(D) → R, the scalar integral of f over the
surface X is
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For any continuous vector field F : X(D) → R
3, the vector

integral of F along X is
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Equivalently,
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Surface integrals and reparametrization

Given two smooth parametrized surfaces X : D1 → R
3 and

Y : D2 → R
3, we say that Y is a smooth reparametrization

of X if there exists an invertible function H : D2 → D1 such
that Y = X ◦H and both H and H−1 are smooth.

Theorem 1 Any scalar surface integral is invariant under
smooth reparametrizations.

Any smooth parametrization of a surface defines an
orientation on it (continuous, unit normal vector field n).

Theorem 2 Any vector surface integral is invariant under
smooth orientation-preserving reparametrizations and changes
its sign under orientation-reversing reparametrizations.

As a consequence, we can define the integral of a function
over a non-parametrized smooth surface and the integral of a
vector field along a non-parametrized, oriented smooth surface.



Gauss’s Theorem

Theorem Let D ⊂ R
3 be a closed, bounded

region with piecewise smooth boundary ∂D (not

necessarily connected) oriented by outward unit
normals to D. Then for any smooth vector field F

on D, ‹

∂D

F·dS =

˚

D

∇·F dV .

Corollary If a smooth vector field F : D → R
3

has no divergence, ∇·F = 0, then

‹

C

F·dS = 0

for any closed, piecewise smooth surface C that
bounds a subregion of D.



Gauss’ Theorem

Proof in the case D = [0, 1]×[0, 1]×[0, 1] and F = (0, 0,P):
ˆ 1

0

∂P

∂z
(x , y , ζ) dζ = P(x , y , 1)− P(x , y , 0)

for any x , y ∈ [0, 1] due to the Fundamental Theorem of
Calculus. Integrating this equality over the unit square
Q = [0, 1]×[0, 1], we obtain
˚

D

∂P

∂z
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Q

P(x , y , 1) dx dy −

¨

Q

P(x , y , 0) dx dy .

The first integral in the right-hand side equals the integral of
the field F along the top face Q×{1} of the cube D (oriented
by the upward unit normals). The second integral equals the
integral of F along the bottom face Q×{0} (oriented
likewise). Note that integrals of F along the other faces of D
are 0 (since F is parallel to those faces). It follows that the
entire right-hand side equals the integral of F along ∂D.



Problem. Let C denote the closed cylinder with

bottom given by z = 0, top given by z = 4, and
lateral surface given by x2 + y 2 = 9. We orient ∂C

with outward normals. Find the integral of a vector
field F(x , y , z) = xe1 + ye2 + ze3 along ∂C .

First let us evaluate the integral directly.

The top of the cylinder is parametrized by Xtop : D → R
3,

Xtop(x , y ) = (x , y , 4), where

D = {(x , y ) ∈ R
2 : x2 + y 2 ≤ 9}.

The bottom is parametrized by Xbot : D → R
3,

Xbot(x , y ) = (x , y , 0).

The lateral surface is parametrized by
Xlat : [0, 2π]× [0, 4] → R

3, Xlat(φ, z) = (3 cosφ, 3 sinφ, z).



We have ∂Xtop

∂x
= (1, 0, 0), ∂Xtop

∂y
= (0, 1, 0). Hence
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× ∂Xtop
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= e1 × e2 = e3.

Since Xbot = Xtop − (0, 0, 4), we also have ∂Xbot
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Further, ∂Xlat
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= (−3 sinφ, 3 cosφ, 0) and ∂Xlat
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= (0, 0, 1).
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= (3 cosφ, 3 sinφ, 0).

We observe that Xtop and Xlat agree with the orientation of
the surface C while Xbot does not. It follows that
‹
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F · dS =

¨
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F · dS−
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F · dS.



Integrating the vector field F = xe1 + ye2 + ze3 along each
part of the boundary of C , we obtain:
¨
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F·dS =
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D

(x , y , 4)·(0, 0, 1) dx dy =
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4 dx dy = 36π,
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(3 cosφ, 3 sinφ, z) · (3 cosφ, 3 sinφ, 0) dφ dz

=
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9 dφ dz = 72π.

Thus

‹

∂C

F · dS = 36π − 0 + 72π = 108π.



Problem. Let C denote the closed cylinder with

bottom given by z = 0, top given by z = 4, and
lateral surface given by x2 + y 2 = 9. We orient ∂C
with outward normals. Find the integral of a vector

field F(x , y , z) = xe1 + ye2 + ze3 along ∂C .

Now let us use Gauss’ Theorem:
‹

∂C

F·dS =
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3 dx dy dz = 108π.



Stokes’s Theorem

Suppose S is an oriented surface in R
3 bounded by an oriented

curve ∂S . We say that ∂S is oriented consistently with S

if, as one traverses ∂S , the surface S is on the left when
looking down from the tip of n, the unit normal vector
indicating the orientation of S .

Theorem Let S ⊂ R
3 be a bounded, piecewise smooth

oriented surface with piecewise smooth boundary ∂S oriented
consistently with S . Then for any smooth vector field F on S ,

¨

S

curl(F)·dS =

˛

∂S

F·ds.

Corollary If the surface S is closed (i.e., has no boundary),
then for any smooth vector field F on S ,

¨

S

curl(F)·dS = 0.



Example

Suppose that a bounded, piecewise smooth surface S ⊂ R
3 is

contained in the xy -coordinate plane, that is, S = D×{0} for
a domain D ⊂ R

2. We orient S by the upward unit normal
vector n = (0, 0, 1) and orient the boundary ∂S = ∂D×{0}
consistently with S . Further, suppose that F is a horizontal
vector field, F = (M ,N, 0). By Stokes’ Theorem,

¨

S

curl(F)·dS =

˛

∂S

F·ds.

Recall that
˜

S
curl(F)·dS =
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S
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It follows that this particular case of Stokes’ Theorem is
equivalent to Green’s Theorem.


