
MATH 311

Topics in Applied Mathematics I

Lecture 38:

Review for the final exam.



Topics for the final exam: Part I

Elementary linear algebra (L/C 1.1–1.5, 2.1–2.2)

• Systems of linear equations: elementary
operations, Gaussian elimination, back substitution.

• Matrix of coefficients and augmented matrix.
Elementary row operations, row echelon form and
reduced row echelon form.

• Matrix algebra. Inverse matrix.

• Determinants: explicit formulas for 2×2 and
3×3 matrices, row and column expansions,

elementary row and column operations.



Topics for the final exam: Part II

Abstract linear algebra (L/C 3.1–3.6, 4.1–4.3)

• Vector spaces (vectors, matrices, polynomials, functional
spaces).
• Subspaces. Nullspace, column space, and row space of a
matrix.
• Span, spanning set. Linear independence.
• Bases and dimension.
• Rank and nullity of a matrix.
• Coordinates relative to a basis.
• Change of basis, transition matrix.

• Linear transformations.
• Matrix transformations.
• Matrix of a linear mapping.
• Change of basis for a linear operator.
• Similarity of matrices.



Topics for the final exam: Part III

Advanced linear algebra (L/C 5.1–5.6, 6.1–6.3)

• Eigenvalues, eigenvectors, eigenspaces
• Characteristic polynomial
• Bases of eigenvectors, diagonalization

• Euclidean structure in Rn (length, angle, dot product)
• Inner products and norms
• Orthogonal complement, orthogonal projection
• Least squares problems
• The Gram-Schmidt orthogonalization process



Topics for the final exam: Part IV

Vector analysis (L/C 8.1–8.4, 9.1–9.5, 10.1–10.3,
11.1–11.3)

• Gradient, divergence, and curl

• Fubini’s Theorem
• Change of coordinates in a multiple integral
• Geometric meaning of the determinant

• Length of a curve
• Line integrals
• Green’s Theorem
• Conservative vector fields

• Area of a surface
• Surface integrals
• Gauss’ Theorem
• Stokes’ Theorem



Problem. Let V be the vector space spanned by

functions f1(x) = x sin x , f2(x) = x cos x ,
f3(x) = sin x , and f4(x) = cos x .

Consider the linear operator D : V → V ,
D = d/dx .

(a) Find the matrix A of the operator D relative to

the basis f1, f2, f3, f4.
(b) Find the eigenvalues of A.

(c) Is the matrix A diagonalizable?



A is a 4×4 matrix whose columns are coordinates of
functions Dfi = f ′

i
relative to the basis f1, f2, f3, f4.

f ′
1
(x) = (x sin x)′ = x cos x + sin x = f2(x) + f3(x),

f ′
2
(x) = (x cos x)′ = −x sin x + cos x

= −f1(x) + f4(x),

f ′
3
(x) = (sin x)′ = cos x = f4(x),

f ′
4
(x) = (cos x)′ = − sin x = −f3(x).

Thus A =









0 −1 0 0
1 0 0 0
1 0 0 −1

0 1 1 0









.



Eigenvalues of A are roots of its characteristic

polynomial

det(A− λI ) =

∣

∣

∣

∣

∣

∣

∣

∣

−λ −1 0 0
1 −λ 0 0

1 0 −λ −1
0 1 1 −λ

∣

∣

∣

∣

∣

∣

∣

∣

Expand the determinant by the 1st row:

det(A− λI ) = −λ

∣

∣

∣

∣

∣

∣

−λ 0 0

0 −λ −1
1 1 −λ

∣

∣

∣

∣

∣

∣

− (−1)

∣

∣

∣

∣

∣

∣

1 0 0

1 −λ −1
0 1 −λ

∣

∣

∣

∣

∣

∣

= λ2(λ2+1)+(λ2+1) = (λ2+1)2 = (λ−i)2(λ+i)2.

The roots are i and −i , both of multiplicity 2.



One can show that both eigenspaces of A are one-dimensional.
The eigenspace for i is spanned by (0, 0, i , 1) and the
eigenspace for −i is spanned by (0, 0,−i , 1). It follows that
the matrix A is not diagonalizable in the complex vector space
C4 (let alone real vector space R4).

There is also an indirect way to show that A is not
diagonalizable. Assume the contrary. Then A = UPU−1,
where U is an invertible matrix with complex entries and

P =









i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i









(note that P should have the same characteristic polynomial
as A). This would imply that A2 = UP2U−1. But P2 = −I
so that A2 = U(−I )U−1 = −I .

Let us check if A2 = −I .



A2 =









0 −1 0 0

1 0 0 0
1 0 0 −1

0 1 1 0









2

=









−1 0 0 0

0 −1 0 0
0 −2 −1 0

2 0 0 −1









.

Since A2 6= −I , we have a contradiction. Thus the

matrix A is not diagonalizable in C
4.



Problem. Consider a linear operator L : R3 → R3

defined by L(v) = v0 × v, where
v0 = (3/5, 0,−4/5).

(a) Find the matrix B of the operator L.

(b) Find the range and kernel of L.
(c) Find the eigenvalues of L.

(d) Find the matrix of the operator L2016 (L applied
2016 times).



L(v) = v0 × v, v0 = (3/5, 0,−4/5).

Let v = (x , y , z) = xe1 + ye2 + ze3. Then

L(v) = v0 × v =

∣

∣

∣

∣

∣

∣

e1 e2 e3

3/5 0 −4/5

x y z

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

0 −4/5

y z

∣

∣

∣

∣

e1 −

∣

∣

∣

∣

3/5 −4/5

x z

∣

∣

∣

∣

e2 +

∣

∣

∣

∣

3/5 0

x y

∣

∣

∣

∣

e3

= 4

5
ye1 −

(

4

5
x + 3

5
z
)

e2 +
3

5
ye3 =

(

4

5
y ,−4

5
x − 3

5
z , 3

5
y
)

.

In particular, L(e1) =
(

0,−4

5
, 0
)

, L(e2) =
(

4

5
, 0, 3

5

)

,

L(e3) =
(

0,−3

5
, 0
)

.



Therefore B =





0 4/5 0

−4/5 0 −3/5
0 3/5 0



.

The range of the operator L is spanned by columns

of the matrix B . It follows that Range(L) is the
plane spanned by v1 = (0, 1, 0) and v2 = (4, 0, 3).

The kernel of L is the nullspace of the matrix B ,

i.e., the solution set for the equation Bx = 0.




0 4/5 0
−4/5 0 −3/5

0 3/5 0



 →





1 0 3/4
0 1 0

0 0 0





=⇒ x + 3

4
z = y = 0 =⇒ x = t(−3/4, 0, 1).



Alternatively, the kernel of L is the set of vectors

v ∈ R3 such that L(v) = v0 × v = 0.

It follows that this is the line spanned by

v0 = (3/5, 0,−4/5).

Characteristic polynomial of the matrix B :

det(B − λI ) =

∣

∣

∣

∣

∣

∣

−λ 4/5 0
−4/5 −λ −3/5
0 3/5 −λ

∣

∣

∣

∣

∣

∣

= −λ3−(3/5)2λ−(4/5)2λ = −λ3−λ = −λ(λ2+1).

The eigenvalues are 0, i , and −i .



The matrix of the operator L2016 is B2016.

Since the matrix B has eigenvalues 0, i , and −i , it is

diagonalizable in C
3. Namely, B = UDU−1, where

U is an invertible matrix with complex entries and

D =





0 0 0
0 i 0

0 0 −i



.

Then B2016 = UD2016U−1. We have that D2016 =
= diag

(

0, i 2016, (−i)2016
)

= diag(0, 1, 1) = −D2.
Hence

B2016 = U(−D2)U−1 = −B2 =





0.64 0 0.48

0 1 0
0.48 0 0.36



.



Problem. Find a quadratic polynomial that is the
best least squares fit to the function f (x) = |x | on
the interval [−1, 1].

The best least squares fit is a polynomial q(x) that

minimizes the distance relative to the integral norm

‖f − q‖ =

(
ˆ

1

−1

|f (x)− q(x)|2 dx

)1/2

over all polynomials of degree 2.



The norm ‖ · ‖ is induced by the inner product

〈g , h〉 =

ˆ

1

−1

g(x)h(x) dx .

Therefore ‖f − p‖ is minimal if p is the orthogonal
projection of the function f on the subspace P3 of

quadratic polynomials.

Suppose that p0, p1, p2 is an orthogonal basis for

P3. Then

q(x) =
〈f , p0〉

〈p0, p0〉
p0(x) +

〈f , p1〉

〈p1, p1〉
p1(x) +

〈f , p2〉

〈p2, p2〉
p2(x).



An orthogonal basis can be obtained by applying the

Gram-Schmidt orthogonalization process
to the basis 1, x , x2:

p0(x) = 1,

p1(x) = x −
〈x , p0〉

〈p0, p0〉
p0(x) = x −

〈x , 1〉

〈1, 1〉
= x ,

p2(x) = x2 −
〈x2, p0〉

〈p0, p0〉
p0(x)−

〈x2, p1〉

〈p1, p1〉
p1(x)

= x2 −
〈x2, 1〉

〈1, 1〉
−

〈x2, x〉

〈x , x〉
x = x2 −

1

3
.



Problem. Find a quadratic polynomial that is the
best least squares fit to the function f (x) = |x | on

the interval [−1, 1].

Solution:

q(x) =
〈f , p0〉

〈p0, p0〉
p0(x) +

〈f , p1〉

〈p1, p1〉
p1(x) +

〈f , p2〉

〈p2, p2〉
p2(x)

=
1

2
p0(x) +

15

16
p2(x)

=
1

2
+

15

16

(

x2 −
1

3

)

=
3

16
(5x2 + 1).





Area, volume, and determinants

• 2×2 determinants and plane geometry
Let P be a parallelogram in the plane R2. Suppose that
vectors v1, v2 ∈ R2 are represented by adjacent sides of P.
Then area(P) = |detA|, where A = (v1, v2), a matrix whose
columns are v1 and v2.

Consider a linear operator LA : R2 → R2 given by
LA(v) = Av for any column vector v. Then
area(LA(D)) = |detA| area(D) for any bounded domain D.

• 3×3 determinants and space geometry
Let Π be a parallelepiped in space R

3. Suppose that vectors
v1, v2, v3 ∈ R3 are represented by adjacent edges of Π. Then
volume(Π) = |detB |, where B = (v1, v2, v3), a matrix whose
columns are v1, v2, and v3.

Similarly, volume(LB(D)) = |detB | volume(D) for any
bounded domain D ⊂ R3.



x

y
z

Parallelepiped is a prism.

(Volume) = (area of the base) × (height)

Area of the base = |y × z|

Volume = |x · (y× z)|



x

y
z

Tetrahedron is a pyramid.

(Volume) = 1

3
(area of the base) × (height)

Area of the base = 1

2
|y × z|

=⇒ Volume = 1

6
|x · (y × z)|


