MATH 311-504/505 Fall 2017

Sample problems for the final exam: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 Find the point of intersection of the planes x +2y — 2 =1, x — 3y = —5, and
2z +y+2=0in R3.

The intersection point (x,y, z) is a solution of the system

T+2y—z=1,
r— 3y = —b,
2r+y+2=0.

To solve the system, we convert its augmented matrix into reduced row echelon form using elementary

row operations:

1 2 -1 1 1 2 -1 1 1 2 -1 1 1 2 —1 1
1 -3 0|5 —=10 -5 1{-6]—=10 =5 1{-6]—=10 =3 3| -2
2 1 1 0 2 1 1 0 0 -3 3|-2 0 -5 1]—-6
1 2 —1 1 1 2 -1 1 1 2 —-1]1
-0 1 -1 2] —>f0o1 -1 2|=|01 -1|3
8 2
0 -5 1|6 00 —4|-8 00 1|2
12 -1]1 12 0]2 10 0|-1
4 4 4
o1 ol4|=]o1old]l=]01 0| 4
2 2 2
0 0 2 0 12 00 1] 2
Thus the three planes intersect at the point (—1, %, %)

Alternative solution: The intersection point (x,y, z) is a solution of the system

r4+2y—z=1,

r— 3y = —b,

2r +y+2z=0.
Adding all three equations, we obtain 4z = —4. Hence x = —1. Substituting x = —1 into the second
equation, we obtain y = %. Substituting z = —1 and y = % into the third equation, we obtain z = %
It is easy to check that z = —1, y = %, z = % is indeed a solution of the system. Thus (—1, %, %) is

the unique intersection point.

Problem 2 Consider a linear operator L : R® — R? given by
L(v) = (v-vy)vy, where vy =(1,1,1), vo = (1,2,2).

(i) Find the matrix of the operator L.



Given v = (,y, z) € R3, we have that v-v; = z+y+zand L(v) = (z+y+z, 2(z+y+2), 2(x+y+2)).
Let A denote the matrix of the linear operator L. The columns of A are vectors L(e;), L(ez2), L(es),
where e; = (1,0,0), e; = (0,1,0), e3 = (0,0,1) is the standard basis for R3. Therefore

A=12 2 2
2 2 2

(ii) Find the dimensions of the range and the kernel of L.

The range Range(L) of the linear operator L is the subspace of all vectors of the form L(v), where
v € R3. Tt is easy to see that Range(L) is the line spanned by the vector vo = (1,2,2). Hence
dim Range(L) = 1.

The kernel ker(L) of the operator L is the subspace of all vectors x € R? such that L(x) = 0.
Clearly, L(x) = 0 if and only if x - vi = 0. Therefore ker(L) is the plane z + y + z = 0 orthogonal to
v1 and passing through the origin. Its dimension is 2.

(iii) Find bases for the range and the kernel of L.

Since the range of L is the line spanned by the vector vy = (1,2,2), this vector is a basis for the
range. The kernel of L is the plane given by the equation x 4+ y + z = 0. The general solution of
the equation is x = —t — s, y = t, 2 = s, where t,s € R. It gives rise to a parametric representation
t(—1,1,0) 4+ s(—1,0,1) of the plane. Thus the kernel of L is spanned by the vectors (—1,1,0) and
(—1,0,1). Since the two vectors are linearly independent, they form a basis for ker(L).

Problem 3 Let v; = (1,1,1), vo = (1,1,0), and v3 = (1,0,1). Let L : R® — R3 be a
linear operator on R3 such that L(vy) = vy, L(vy) = v3, L(v3) = vy.
(i) Show that the vectors vy, vy, v3 form a basis for R3.

Let U be a 3 x 3 matrix such that its columns are vectors vi, vo, vs:

1 11
U=1110
1 01

To find the determinant of U, we subtract the second row from the first one and then expand by the
first row:

0 01
detU=1]1 1 0 :H (1)‘:—1.
1 01

Since det U # 0, the vectors vy, vs, vy are linearly independent. It follows that they form a basis for
R3.
(ii) Find the matrix of the operator L relative to the basis vy, va, vs.

Let A denote the matrix of L relative to the basis vi,vs,v3. By definition, the columns of A are
coordinates of vectors L(vy), L(va), L(vs) with respect to the basis vi,va,vs. Since L(vy) = vy =
0vy + 1ve + 0vs, L(vy) = vy = 0vy + Ova + 1vs, L(v3) = vi = 1vy + 0va + Ovs, we obtain

0 01
A=|1 0 0
010



(iii) Find the matrix of the operator L relative to the standard basis.

Let S denote the matrix of L relative to the standard basis for R3. We have S = UAU !, where A
is the matrix of L relative to the basis vi, vy, vy (already found) and U is the transition matrix from
V1, Ve, V3 to the standard basis (the vectors vy, vg, vs are consecutive columns of U):

0 01 111
A=(1 0 0], U=1110
010 1 01
To find the inverse U ™!, we merge the matrix U with the identity matrix I into one 3 x 6 matrix and
apply row reduction to convert the left half U of this matrix into I. Simultaneously, the right half I

will be converted into U~1:

11 1]1 00 11 1] 10 0 1 1 1] 10 0
win=(110/010|={00 -1/-110]=]0 0 —-1[-110
10 1/0 0 1 10 1] 00 1 0 -1 0|-1 0 1
1 1 1] 100 1 1 o] 010 1 0 0|l-111
10 -1 o|l-101)]—=f0 -1 o0o|/-101]=(0 -1 o0]-1 01
0 0 —1]-11 0 0 0 —1|-11 0 0 0 —-1|-1 1 0
1 00]-1 1 1
—l0 10} 1 0 —-1)=UU"
00 1| 1 =1 0
Thus
111 00 1\ /-1 1 1
S=UAU' =111 0 100 0 —1
1 01 01 0 1 -1 0
111 -1 1 1 1 0 0
=10 1 1 0 —-1]=1{o0 1
01 1 1 -1 0 2 —1 —1

Alternative solution: Let S denote the matrix of L relative to the standard basis e; = (1,0,0),e2 =
(0,1,0),e3 = (0,0,1). By definition, the columns of S are vectors L(e;), L(ez2), L(es). It is easy to
observe that e = vi — v3, €3 = v — vy, and e = vo — €9 = —v; + vy + v3. Therefore

L(e1) = L(—vi1 +va+v3) = —L(v1) + L(v2) + L(v3) = —va + vz + vi = (1,0, 2),

L(e2) = L(Vl - V3) = L(Vl) - L(V3) =Vgy — V] = (0707 _1)7
L(eg) = L(Vl — V2) = L(Vl) — L(Vg) = V9o — V3 = (O, 1, —1).
Thus
1 0
S=10 0 1
2 -1 -1

Problem 4 Let B =

—_ = =
—_ = =
—_ = =



(i) Find all eigenvalues of the matrix B.
The eigenvalues of B are roots of the characteristic equation det(B — AI) = 0. We obtain that

I-x 1 1

det(B—X)=| 1 1-Xx 1 |=(1-X3=-301-X+2
1 11—

=(1=32+3X2 =X =31 -N+2=3\2-N=)2(3-)\).

Hence the matrix B has two eigenvalues: 0 and 3.

(ii) Find a basis for R3 consisting of eigenvectors of B.

An eigenvector x = (x,y, z) of B associated with an eigenvalue X is a nonzero solution of the vector
equation (B — AI)x = 0. First consider the case A = 0. We obtain that

11 1 x 0
Bx=0<«< [1 1 1 y|=(0)] <= z+y+2=0.
1 11 z 0

The general solution is v = —t — s, y = t, 2 = s, where t,s € R. Equivalently, x = ¢(—1,1,0) +
s(—1,0,1). Hence the eigenspace of B associated with the eigenvalue 0 is two-dimensional. Tt is
spanned by eigenvectors vi = (—1,1,0) and vo = (—1,0,1).

Now consider the case A = 3. We obtain that

2 1 1\ [z 0
B-30)x=0 < [ 1 -2 1]||y]|=]0
1 1 -2/ \: 0

10 -1\ [z 0
— (o1 —1||lyl=(0] = {x_ZZQ
00 0/)\z 0 y—==0.

The general solution is x = y = z = ¢, where ¢t € R. In particular, v3 = (1,1,1) is an eigenvector of B

associated with the eigenvalue 3.
The vectors vi = (—1,1,0), vo = (—1,0,1), and v3 = (1,1,1) are eigenvectors of the matrix B.

They are linearly independent since the matrix whose rows are these vectors is nonsingular:

=3 0.

==
==
— = O

It follows that vi,va, v3 is a basis for R3.

(iii) Find an orthonormal basis for R? consisting of eigenvectors of B.

It is easy to check that the vector vs is orthogonal to v and vs. To transform the basis vi, vo, vy
into an orthogonal one, we only need to orthogonalize the pair vi,vo. Using the Gram-Schmidt

process, we replace the vector vy by

Vo - Vi 1
= vy — =(-1,0,1) — =(-1,1 =(-1/2,—-1/2,1).
u AP Vl'VlVl ( 707 ) 2( ) 70) ( /7 /7 )



Now v1,u,vs is an orthogonal basis for R3. Since u is a linear combination of the vectors v; and vo,
it is also an eigenvector of B associated with the eigenvalue 0.
. \2! u V3 .
Finally, vectors w; = m, Wy = W, and wg = ﬂ form an orthonormal basis for R3
Vi1 u V3

consisting of eigenvectors of B. We get that ||vi]| = v/2, |Jul| = \/3/2, and |v3| = v/3. Thus

1 1 1
w; = —(—1,1,0), we=—=(-1,-1,2), w3=—(1,1,1).

V2 V6 V3

(iv) Find a diagonal matrix D and an invertible matrix U such that B = UDU™!.

The vectors vi = (—1,1,0), vo = (—1,0,1), and v3 = (1,1,1) are eigenvectors of the matrix B
associated with eigenvalues 0, 0, and 3, respectively. Since these vectors form a basis for R3, it follows
that B = UDU ™!, where

D=

o O O
o O O
w o O

-1
. U=| 1
0

_ O =
—_ =

Here U is the transition matrix from the basis v, vg, v to the standard basis (its columns are vectors
v1,Va,v3) while D is the matrix of the linear operator L : R3 — R3, L(x) = Bx with respect to the
basis v, va, V3.

Problem 5 Let V be a subspace of R* spanned by vectors x; = (1,1,0,0), xo = (2,0, —1, 1),
and x3 = (0,1,1,0).

(i) Find the distance from the point y = (0,0,0,4) to the subspace V.

(ii) Find the distance from the point y to the orthogonal complement V+.

The vector y is uniquely represented as y = p 4+ o, where p € V and o is orthogonal to V, that is,
o € V. The vector p is the orthogonal projection of y onto the subspace V. Since (Vl)l =V, the
vector o is the orthogonal projection of y onto the subspace V1. It follows that the distance from the
point y to V equals ||o|| while the distance from y to V+ equals ||p||.

The orthogonal projection p of the vector y onto the subspace V is easily computed when we have
an orthogonal basis for V. To get such a basis, we apply the Gram-Schmidt orthogonalization process
to the basis x1, X9, X3:

X2 V1

2
V] =X1 = (17 17070)7 V) =X — Vi = (2707 -1, 1) - 5(17 17070) = (17 -1,—1, 1)7

Vi -Vy

. . 1 -2
Vi =g = vy = 2Py = (0,1,1,0) - 5(1,1,0,0) = —=(1, -1, -1,1) = (0,0,1/2,1/2).

1
vi-Vvi1 V2 - V2
Now that vq, vy, vg is an orthogonal basis for V' we obtain
y Vo y V3
v

y-vi
= vy + 2+ V3 =
Vi-Vy Vo Vo V3 V3

p

0 4 2
= ~(1,1,0,0) + ~(1,-1,-1,1) + —=(0,0,1/2,1/2) = (1,~1,1,3).
2(777)+4(7 ) 7)+1/2(77/7/) (7 77)



Consequently, o =y — p = (0,0,0,4) — (1,—1,1,3) = (—1,1,—1,1). Thus the distance from y to the
subspace V equals |lo|| = 2 and the distance from y to V* equals |p|| = V12 = 2V/3.

Problem 6 Consider a vector field F(z,y, 2) = xyze; + xye; + r2es.
(i) Find curl(F).

S 9 T (o) oy Dy 0
wl®) =15 & ==\ e )T Ta e )
ryz vy

n d(zy) O(xyz
ox dy

_ )> es = (zy — 2z)es + (y — x2)es.

(ii) Find the integral of the vector field curl(F) along a hemisphere H = {(z,y,2) € R? :
22 +y*+22 =1, 2 > 0}. Orient the hemisphere by the normal vector n = (0,0, 1) at the point
0

According to Stokes’ Theorem,

//chrl(F)-alS:quHF-als7

where the boundary OH is oriented consistently with H. The boundary is a circle, 0H = {(x,y, z) €

R3: 22 + 9% =1, z = 0}. It is parametrized (with the right orientation) by a path x : [0, 27] — R3,

x(t) = (cost,sint,0). We have F(x(t)) = (0,cost sint,cos?t) and x'(t) = (—sint, cost,0). Therefore
2

2m 2 1
7{ F-ds:/F-ds:/ F(x(t))-x’(t)dt:/ cos’t sintdt = —= cos®t =0.
oH x 0 0 3

t=0

Problem 7 Find the volume of a parallelepiped bounded by planes x + 2y — z = —1,
r+2y—z=12—-3y=-5,z—3y=0,2z4+y+2=0,and 2z +y + 2 = 2.

Let P denote the parallelepiped. The volume of P can be found as a triple integral:

Volume(P) = /// ldzdydz.
P

To evaluate the integral, we are going to change variables. New variables are u = x4+2y—z, v =
and w = 2x + y + z. In these variables the parallelepiped P is given by —1 < u < 1, =5 < v < 0,
0 <w < 2. It follows that

2 0 1
Volume(P) = / / / det M‘ du dv dw.
0 J-5J-1 A(u, v, w)
Our change of coordinates is linear,
U 1 2 -1 T
v]|=[1 -3 0 Y
w 2 1 1 z



O(u, v, w)

Let U denote the above matrix. The Jacobian matrix ﬁ equals U at every point of R3.
x? y7Z

o(x,y,z .
Consequently, the Jacobian matrix M equals U1 everywhere on R3. We obtain

O(u,v,w)

3
detU=|1 -3 0:1—30:‘
2

Hence det(U~!) = (det U)~! = —1/12. Then

2 0 [l 1 5
Volume(P) = / / / |det(U_1)‘ dudvdw=—-2-5-2=—.
0o Jos5J-1 12 3



