MATH 311
Topics in Applied Mathematics |
Lecture 28:

Orthogonality in inner product spaces.
The Gram-Schmidt process.



Norm

The notion of norm generalizes the notion of length
of a vector in R".

Definition. Let V be a vector space. A function
a:V — R, usually denoted «a(x) = ||x||, is called
a norm on V if it has the following properties:

(i) ||x|| >0, ||x]] =0 only for x=0  (positivity)
(ii) |[rx|| = |r|||x]| forall reR (homogeneity)
(iii) Ix +yl| < [Ix]] + [yl (triangle inequality)

A normed vector space is a vector space endowed
with a norm. The norm defines a distance function
on the normed vector space: dist(x,y) = ||x —y||.



Examples. V =R", x = (x1,%,...,X,) € R".
o |Ix[oc = max(|xi], [xal, .., [xal)-

1/p

o |Ixll,= (PalP+ pelP+ -+ |xl?)"" p> 1.

Examples. V = Cla, b|, f:[a, b] — R.

o [l = max [F(x)]

b 1/p
-Hﬂb=</!ﬂwWW> sl



Inner product

The notion of inner product generalizes the notion
of dot product of vectors in R”.

Definition. Let V be a vector space. A function
f:V xV =R, usually denoted 5(x,y) = (x,y),
is called an inner product on V if it is positive,
symmetric, and bilinear. That is, if

(i) (x,x) >0, (x,x) =0 only for x = 0 (positivity)
(i) (x,y) ={y,x) (symmetry)
(i) (rx,y) = r(x,y) (homogeneity)
(iv) (x+y,z) =(x,z) + (y,z) (distributive law)
An inner product space is a vector space endowed
with an inner product.



Examples. V =R".
o (X,y) =X y=xy1+ X2+ "+ XpYn

i <X, y> = lelyl + d2X2y2 + e dnxn)/ny
where di,d>,...,d, > 0.

Examples. V = CJa, b].

o (fg)= | F(0g(x)ox.

b
o (Fg)= [ FE(w(x) o

where w is bounded, piecewise continuous, and
w > 0 everywhere on [a, b].



Theorem Suppose (x,y) is an inner product on a
vector space V. Then

(x,y)* < (x,x)(y,y) forall x,yeV.
Proof: Forany te R let vi =x+ty. Then
<Vt7 Vt> - <X + ty,X + ty> - <X7X + ty> + t<y,X + ty>
= (x,x) + t(x,y) + t{y, x) + t3(y,y).

Assume that y # 0 and let t = _(x,y)I Then
{y.y)

(x,y)°

Vi, Vi) = (X, X) + E(Y, X) = (X, X) — .

Since (v¢,vy) > 0, the desired inequality follows.
In the case y =0, we have (x,y) = (y,y) =0.



Cauchy-Schwarz Inequality:

(%, ¥)] < /(%) \/(y, ).

Corollary 1 |x-y| < |[|x||[|y|| for all x,y € R".
Equivalently, for all x;, y; € R,

i+ + X)) < OF 4+ +x) 0+ +y7).

Corollary 2 For any f,g € C|a, b],

</ab fx)g(x) dx) / [F(x)|? dx - / 1g(x)[? dx.



Norms induced by inner products

Theorem Suppose (x,y) is an inner product on a
vector space V. Then ||x|| = \/(x,x) is a norm.

Proof: Positivity is obvious. Homogeneity:

[rx|| = 1/ {rx, rx) = \/r2(x,x) = |r| /(x,x).
Triangle inequality (follows from Cauchy-Schwarz's):
Ix +yl* = (x+y,x+y)
= (%,%) + (X, y) + {y,x) + {y, y)
< (% %) + [y + [y, x)[ + (¥, ¥)
< [|x[1Z =+ 2[Ix[ flyll + [IylI* = (lIxI] + [ly[})*.




Examples. e The length of a vector in R”,
X[ = Vx§ 53+ 47,
is the norm induced by the dot product

XYy =Xy1t+Xy+ -+ XpYn-

b 1/2
e The norm ||f]j2 = (/ ]f(x)]zdx> on the

vector space C|a, b] is induced by the inner product

(f.g) = | F(g(x) o



Angle
Let V' be an inner product space with an inner
product (-, -) and the induced norm || - ||. Then

[ < x|yl

for all x,y € V' (the Cauchy-Schwarz inequality).
Therefore we can define the angle between nonzero
vectors in V' by

Z(x,y) = arccos

x| [yl
Then (x,y) = ||x] |ly]l cos Z(x,y).

In particular, vectors x and y are orthogonal
(denoted x L y) if (x,y)=0.



Orthogonal sets

Let V' be an inner product space with an inner
product (-,-) and the induced norm || - ||.

Definition. A nonempty set S C V' of nonzero
vectors is called an orthogonal set if all vectors in
S are mutually orthogonal. Thatis, 0 ¢ S and
(x,y) =0 forany x,y € S, x #y.

An orthogonal set S C V s called orthonormal if
|x][ =1 forany x € S.

Example. The standard basis e; = (1,0,0,...,0),
e =(0,1,0,...,0), ..., e,=(0,0,0,...,1).
It is an orthonormal set.



Example

o V=Cl-ma] (fg)= / " F(x)g(x) dx.

fi(x) =sinx, f(x) =sin2x, ..., fo(x) =sinnx, ...

T m if m=
(T ) :/_ sin(mx) sin(nx) dx = { 0 i :#Z’

Thus the set {fi, h, f5,...} is orthogonal but not
orthonormal.

It is orthonormal with respect to a scaled inner
product

(f.g) = %/W f(x)g(x) dx.

—T



Orthogonality —> linear independence

Theorem Suppose vi,Vy, ...,V are nonzero
vectors that form an orthogonal set. Then
V1,Vo, ...,V are linearly independent.

Proof: Suppose tivi+ thovy + -+ teve =0
for some t, ty, ..., tx € R.

Then for any index 1 </ < k we have

<t1v1 + vy + - - - + Ly, Vi> = <0, Vi> = 0.
—> ti{vi, V) + to(vo, Vi) + -+ (Vi vp) = 0
By orthogonality, t{v;,v;) =0 = t; =0.



Orthonormal basis

Suppose vi,V»,...,Vv, is an orthonormal basis for
an inner product space V.

Theorem 1 Let x = x;vi + xovo + - - - + x,v, and
Y = yiv1 + yoVo + - - - + ypv,, where x;, y; € R.
Then

(') <X, y> = X1y1 + Xoy2 + - -+ + XpYn,

@) x| = o8 T+

Theorem 2 For any vector x € V,

x = (x,v)vi + (X, vo)vp + - - - + (X, V)V,



Orthogonal projection

Theorem Let V be an inner product space and V; be a
finite-dimensional subspace of V. Then any vector x € V' is
uniquely represented as x = p + o, where p € V4 and

ol Vo.

The component p is called the orthogonal projection of the
vector x onto the subspace V.

Vo

The projection p is closer to x than any other vector in V.
Hence the distance from x to V4 is ||x — p|| = ||o]|.



Let p be the orthogonal projection of a vector
x € V onto a finite-dimensional subspace V.

If Vi is a one-dimensional subspace spanned by a
(x,v)

(v,v)

vector v then p = V.

If Vo admits an orthogonal basis vy, Vs, ..., v, then
X,V X,V X,V
_ vy v V0
<V1, V1> <V2, V2> <Vk7 Vk>

Indeed, (p,v;) = Z <<X’vj>> (Vj,v;) = <(x,v,->> (vi,v;) = (x,v;)

Vi, V; Vi, V;

j=1
— (x—p,v;j) =0 = x—plv, = x—pl V.



The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product.

Suppose Xi,X»,...,X, is a basis for V. Let
Vi = Xy,
Vo = Xy — <X2, V1>V11
(v1,v1)
V3 = X3 — (x3, V1>V1 _ <X3,V2>v2'
<V1, V]_> <V2,V2>
vy, o) KeVer)
(v1,v1) (Vn-1,Vn-1)

Then vy,vy, ..., v, is an orthogonal basis for V.



Span(vy, vy) = Span(xi, X2)



Normalization

Let V be a vector space with an inner product.

Suppose vi,V»,...,V, is an orthogonal basis for V.
V) Vp
Let w; = Wy = ——— W, = .
[va [v2] [[vall
Then wy,ws,...,w, is an orthonormal basis for V.

Theorem Any finite-dimensional vector space with
an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with
an inner product may or may not have an
orthonormal basis.



Problem. Let 1 be the plane spanned by vectors

x; = (1,1,0) and x, = (0,1,1).

(i) Find the orthogonal projection of the vector
= (4,0, —1) onto the plane I.

(ii) Find the distance from y to [1.

First we apply the Gram-Schmidt process to the basis xi, X»:
Vi = X1 = (]., ]., 0),

(X2, V1) 1 o
(v, v1) 5(1,1,0) = (=1/2,1/2,1).

Now that vi, v, is an orthogonal basis for 1, the orthogonal
projection of y onto [1 is

~{ysvi) v <Y,V2> 4 -3
P= <V1,V1> ! <V2,V2> 2(17170) 3/2

= (27 27 0) + (17 _17 _2) = (37 ]-7 _2)
The distance from y to Mis |y — p|| = [|(1, —-1,1)|| = V3.

1=(0,1,1) —

Vo = Xo —

—>(-1/2,1/2,1)




Problem. Approximate the function f(x) = e*
on the interval [—1,1] by a quadratic polynomial.

The best approximation would be a polynomial p(x)
that minimizes the distance relative to the uniform
nhorm:

If = Plloc = max [f(x) — p(x)].

|x|<1

However there is no analytic way to find such a
polynomial. Instead, one can find a “least
squares” approximation that minimizes the integral
norm

I el = ( [ ()~ pLoP o) 7



The norm || - ||2 is induced by the inner product

(g, h) = /_ g(x)h(x) dx.

1

Therefore ||f — p||2 is minimal if p is the
orthogonal projection of the function f on the
subspace P3; of quadratic polynomials.

We should apply the Gram-Schmidt process to the
polynomials 1, x, x?, which form a basis for Ps.
This would yleld an orthogonal basis pg, p1, ps.
Then
(f, po) {f, p1) (f. p2)
X X) + p1(x) + P2(Xx).
S P P L A P L)




