MATH 311 Topics in Applied Mathematics I Lecture 34: Line integrals. Green's theorem.

Path

Definition. A **path** in \mathbb{R}^n is a continuous function $\mathbf{x} : [a, b] \to \mathbb{R}^n$.

Paths provide parametrizations for curves.

Length of the path **x** is defined as $L = \sup_{P} \sum_{j=1}^{k} \|\mathbf{x}(t_{j}) - \mathbf{x}(t_{j-1})\| \text{ over all partitions}$ $P = \{t_{0}, t_{1}, \dots, t_{k}\} \text{ of the interval } [a, b].$

Theorem The length of a smooth path $\mathbf{x} : [a, b] \to \mathbb{R}^n$ is $\int_a^b \|\mathbf{x}'(t)\| dt$. Arclength parameter: $s(t) = \int_a^t \|\mathbf{x}'(\tau)\| d\tau$.

Scalar line integral

Scalar line integral is an integral of a scalar function f over a path $\mathbf{x} : [a, b] \to \mathbb{R}^n$ of finite length relative to the arclength. It is defined as a limit of Riemann sums

$$\mathcal{S}(f, \mathcal{P}, au_j) = \sum_{j=1}^k f(\mathbf{x}(au_j)) \left(s(t_j) - s(t_{j-1})
ight),$$

where $P = \{t_0, t_1, \dots, t_k\}$ is a partition of [a, b], $\tau_j \in [t_j, t_{j-1}]$ for $1 \le j \le k$, and *s* is the arclength parameter of the path **x**.

Theorem Let $\mathbf{x} : [a, b] \to \mathbb{R}^n$ be a smooth path and f be a function defined on the image of this path. Then

$$\int_{\mathbf{x}} f \, d\mathbf{s} = \int_{a}^{b} f(\mathbf{x}(t)) \|\mathbf{x}'(t)\| \, dt.$$

ds is referred to as the arclength element.

Vector line integral

Vector line integral is an integral of a vector field over a smooth path. It is a scalar.

Definition. Let $\mathbf{x} : [a, b] \to \mathbb{R}^n$ be a smooth path and \mathbf{F} be a vector field defined on the image of this path. Then $\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt$.

Alternatively, the integral of **F** over **x** can be represented as the integral of a **differential form** $\int_{\mathbf{x}} F_1 \, dx_1 + F_2 \, dx_2 + \dots + F_n \, dx_n,$ where $\mathbf{F} = (F_1, F_2, \dots, F_n)$ and $dx_i = x'_i(t) \, dt$.

Applications of line integrals

• Mass of a wire

If f is the density on a wire C, then $\int_C f \, ds$ is the mass of C.

• Work of a force

If **F** is a force field, then $\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s}$ is the work done by **F** on a particle that moves along the path **x**.

• Circulation of fluid

If **F** is the velocity field of a planar fluid, then the circulation of the fluid across a closed curve *C* is $\oint_C \mathbf{F} \cdot d\mathbf{s}$.

• Flux of fluid

If **F** is the velocity field of a planar fluid, then the flux of the fluid across a closed curve *C* is $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds$, where **n** is the outward unit normal vector to *C*.

Line integrals and reparametrization

Given a path $\mathbf{x} : [a, b] \to \mathbb{R}^n$, we say that another path $\mathbf{y} : [c, d] \to \mathbb{R}^n$ is a **reparametrization** of \mathbf{x} if there exists a continuous invertible function $u : [c, d] \to [a, b]$ such that $\mathbf{y}(t) = \mathbf{x}(u(t))$ for all $t \in [c, d]$.

The reparametrization may be orientation-preserving (when u is increasing) or orientation-reversing (when u is decreasing).

Theorem 1 Any scalar line integral is invariant under reparametrizations.

Theorem 2 Any vector line integral is invariant under orientation-preserving reparametrizations and changes its sign under orientation-reversing reparametrizations.

As a consequence, we can define the integral of a function over a simple curve and the integral of a vector field over a simple oriented curve.

Green's Theorem

Theorem Let $D \subset \mathbb{R}^2$ be a closed, bounded region with piecewise smooth boundary ∂D oriented so that D is on the left as one traverses ∂D . Then for any smooth vector field $\mathbf{F} = (M, N)$ on D,

$$\oint_{\partial D} \mathbf{F} \cdot d\mathbf{s} = \iint_{D} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy$$

or, equivalently,

$$\oint_{\partial D} M \, dx + N \, dy = \iint_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx \, dy.$$

Examples

Consider vector fields $\mathbf{F}(x, y) = (-y, 0)$, $\mathbf{G}(x, y) = (0, x)$, and $\mathbf{H}(x, y) = (y, x)$.

According to Green's Theorem,

$$\oint_{\partial D} -y \, dx = \iint_D 1 \, dx \, dy = \operatorname{area}(D),$$
$$\oint_{\partial D} x \, dy = \iint_D 1 \, dx \, dy = \operatorname{area}(D),$$
$$\oint_{\partial D} y \, dx + x \, dy = \iint_D 0 \, dx \, dy = 0.$$

Green's Theorem

Proof in the case
$$D = [0,1] \times [0,1]$$
 and $\mathbf{F} = (0,N)$:
$$\int_0^1 \frac{\partial N}{\partial x}(\xi, y) d\xi = N(1,y) - N(0,y)$$

for any $y \in [0, 1]$ due to the Fundamental Theorem of Calculus. Integrating this equality by y over [0, 1], we obtain

$$\iint_D \frac{\partial N}{\partial x} \, dx \, dy = \int_0^1 N(1, y) \, dy - \int_0^1 N(0, y) \, dy.$$

Let $P_1 = (0,0)$, $P_2 = (1,0)$, $P_3 = (1,1)$, and $P_4 = (0,1)$. The first integral in the right-hand side equals the vector integral of the field **F** over the segment P_2P_3 . The second integral equals the integral of **F** over the segment P_1P_4 . Also, the integral of **F** over any horizontal segment is 0. It follows that the entire right-hand side equals the integral of **F** over the broken line $P_1P_2P_3P_4P_1$, that is, over ∂D .

Divergence Theorem

Theorem Let $D \subset \mathbb{R}^2$ be a closed, bounded region with piecewise smooth boundary ∂D oriented so that D is on the left as one traverses ∂D . Then for any smooth vector field \mathbf{F} on D, on D, $\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_{D} \nabla \cdot \mathbf{F} \, dA$.

Proof: Let \mathcal{L} denote the rotation of the plane \mathbb{R}^2 by 90° about the origin (counterclockwise). \mathcal{L} is a linear transformation preserving the dot product. Therefore

$$\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} \, ds = \oint_{\partial D} \mathcal{L}(\mathbf{F}) \cdot \mathcal{L}(\mathbf{n}) \, ds.$$

Note that $\mathcal{L}(\mathbf{n})$ is the unit tangent vector to ∂D . It follows that the right-hand side is the vector integral of $\mathcal{L}(\mathbf{F})$ over ∂D . If $\mathbf{F} = (M, N)$ then $\mathcal{L}(\mathbf{F}) = (-N, M)$. By Green's Theorem, $\oint_{\partial D} \mathcal{L}(\mathbf{F}) \cdot d\mathbf{s} = \oint_{\partial D} -N \, dx + M \, dy = \iint_D \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}\right) \, dx \, dy.$