MATH 311
 Topics in Applied Mathematics I

 Lecture 34:

 Lecture 34: Line integrals. Line integrals. Green's theorem.

 Green's theorem.}

Path

Definition. A path in \mathbb{R}^{n} is a continuous function $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$.
Paths provide parametrizations for curves.
Length of the path \mathbf{x} is defined as
$L=\sup _{P} \sum_{j=1}^{k}\left\|\mathbf{x}\left(t_{j}\right)-\mathbf{x}\left(t_{j-1}\right)\right\|$ over all partitions
$P=\left\{t_{0}, t_{1}, \ldots, t_{k}\right\}$ of the interval $[a, b]$.
Theorem The length of a smooth path
$\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ is $\int_{a}^{b}\left\|\mathbf{x}^{\prime}(t)\right\| d t$.
Arclength parameter: $s(t)=\int_{a}^{t}\left\|\mathbf{x}^{\prime}(\tau)\right\| d \tau$.

Scalar line integral

Scalar line integral is an integral of a scalar function f over a path $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ of finite length relative to the arclength. It is defined as a limit of Riemann sums

$$
\mathcal{S}\left(f, P, \tau_{j}\right)=\sum_{j=1}^{k} f\left(\mathbf{x}\left(\tau_{j}\right)\right)\left(s\left(t_{j}\right)-s\left(t_{j-1}\right)\right),
$$

where $P=\left\{t_{0}, t_{1}, \ldots, t_{k}\right\}$ is a partition of $[a, b]$, $\tau_{j} \in\left[t_{j}, t_{j-1}\right]$ for $1 \leq j \leq k$, and s is the arclength parameter of the path \mathbf{x}.

Theorem Let $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ be a smooth path and f be a function defined on the image of this path. Then

$$
\int_{\mathbf{x}} f d s=\int_{a}^{b} f(\mathbf{x}(t))\left\|\mathbf{x}^{\prime}(t)\right\| d t
$$

$d s$ is referred to as the arclength element.

Vector line integral

Vector line integral is an integral of a vector field over a smooth path. It is a scalar.

Definition. Let $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ be a smooth path and \mathbf{F} be a vector field defined on the image of this path. Then $\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t$.

Alternatively, the integral of \mathbf{F} over \mathbf{x} can be represented as the integral of a differential form

$$
\int_{\mathbf{x}} F_{1} d x_{1}+F_{2} d x_{2}+\cdots+F_{n} d x_{n}
$$

where $\mathbf{F}=\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ and $d x_{i}=x_{i}^{\prime}(t) d t$.

Applications of line integrals

- Mass of a wire

If f is the density on a wire C, then $\int_{C} f d s$ is the mass of C.

- Work of a force

If \mathbf{F} is a force field, then $\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}$ is the work done by \mathbf{F} on a particle that moves along the path \mathbf{x}.

- Circulation of fluid

If \mathbf{F} is the velocity field of a planar fluid, then the circulation of the fluid across a closed curve C is $\oint_{C} \mathbf{F} \cdot d \mathbf{s}$.

- Flux of fluid

If \mathbf{F} is the velocity field of a planar fluid, then the flux of the fluid across a closed curve C is $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s$, where \mathbf{n} is the outward unit normal vector to C.

Line integrals and reparametrization

Given a path $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$, we say that another path $\mathbf{y}:[c, d] \rightarrow \mathbb{R}^{n}$ is a reparametrization of \mathbf{x} if there exists a continuous invertible function $u:[c, d] \rightarrow[a, b]$ such that $\mathbf{y}(t)=\mathbf{x}(u(t))$ for all $t \in[c, d]$.
The reparametrization may be orientation-preserving (when u is increasing) or orientation-reversing (when u is decreasing).

Theorem 1 Any scalar line integral is invariant under reparametrizations.

Theorem 2 Any vector line integral is invariant under orientation-preserving reparametrizations and changes its sign under orientation-reversing reparametrizations.

As a consequence, we can define the integral of a function over a simple curve and the integral of a vector field over a simple oriented curve.

Green's Theorem

Theorem Let $D \subset \mathbb{R}^{2}$ be a closed, bounded region with piecewise smooth boundary ∂D oriented so that D is on the left as one traverses ∂D. Then for any smooth vector field $\mathbf{F}=(M, N)$ on D,

$$
\oint_{\partial D} \mathbf{F} \cdot d \mathbf{s}=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

or, equivalently,

$$
\oint_{\partial D} M d x+N d y=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

Examples

Consider vector fields $\mathbf{F}(x, y)=(-y, 0)$,
$\mathbf{G}(x, y)=(0, x)$, and $\mathbf{H}(x, y)=(y, x)$.
According to Green's Theorem,

$$
\begin{gathered}
\oint_{\partial D}-y d x=\iint_{D} 1 d x d y=\operatorname{area}(D) \\
\oint_{\partial D} x d y=\iint_{D} 1 d x d y=\operatorname{area}(D) \\
\oint_{\partial D} y d x+x d y=\iint_{D} 0 d x d y=0 .
\end{gathered}
$$

Green's Theorem

Proof in the case $D=[0,1] \times[0,1]$ and $\mathbf{F}=(0, N)$:

$$
\int_{0}^{1} \frac{\partial N}{\partial x}(\xi, y) d \xi=N(1, y)-N(0, y)
$$

for any $y \in[0,1]$ due to the Fundamental Theorem of Calculus. Integrating this equality by y over $[0,1]$, we obtain

$$
\iint_{D} \frac{\partial N}{\partial x} d x d y=\int_{0}^{1} N(1, y) d y-\int_{0}^{1} N(0, y) d y
$$

Let $P_{1}=(0,0), P_{2}=(1,0), P_{3}=(1,1)$, and $P_{4}=(0,1)$.
The first integral in the right-hand side equals the vector integral of the field \mathbf{F} over the segment $P_{2} P_{3}$. The second integral equals the integral of \mathbf{F} over the segment $P_{1} P_{4}$. Also, the integral of \mathbf{F} over any horizontal segment is 0 . It follows that the entire right-hand side equals the integral of \mathbf{F} over the broken line $P_{1} P_{2} P_{3} P_{4} P_{1}$, that is, over ∂D.

Divergence Theorem

Theorem Let $D \subset \mathbb{R}^{2}$ be a closed, bounded region with piecewise smooth boundary ∂D oriented so that D is on the left as one traverses ∂D. Then for any smooth vector field \mathbf{F} on D,

$$
\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} d s=\iint_{D} \nabla \cdot \mathbf{F} d A .
$$

Proof: Let \mathcal{L} denote the rotation of the plane \mathbb{R}^{2} by 90° about the origin (counterclockwise). \mathcal{L} is a linear transformation preserving the dot product. Therefore

$$
\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} d s=\oint_{\partial D} \mathcal{L}(\mathbf{F}) \cdot \mathcal{L}(\mathbf{n}) d s .
$$

Note that $\mathcal{L}(\mathbf{n})$ is the unit tangent vector to ∂D. It follows that the right-hand side is the vector integral of $\mathcal{L}(\mathbf{F})$ over ∂D. If $\mathbf{F}=(M, N)$ then $\mathcal{L}(\mathbf{F})=(-N, M)$. By Green's Theorem, $\oint_{\partial D} \mathcal{L}(\mathbf{F}) \cdot d \mathbf{s}=\oint_{\partial D}-N d x+M d y=\iint_{D}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d x d y$.

