MATH 311
Topics in Applied Mathematics I

Lecture 36:
 Surface integrals (continued).
 Gauss' theorem.
 Stokes' theorem.

Surface integrals

Let $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$ be a smooth parametrized surface, where $D \subset \mathbb{R}^{2}$ is a bounded region. Then for any continuous function $f: \mathbf{X}(D) \rightarrow \mathbb{R}$, the scalar integral of f over the surface \mathbf{X} is

$$
\iint_{\mathbf{X}} f d S=\iint_{D} f(\mathbf{X}(s, t))\left\|\frac{\partial \mathbf{X}}{\partial s} \times \frac{\partial \mathbf{X}}{\partial t}\right\| d s d t
$$

For any continuous vector field $\mathbf{F}: \mathbf{X}(D) \rightarrow \mathbb{R}^{3}$, the vector integral of \mathbf{F} along \mathbf{X} is

$$
\iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F}(\mathbf{X}(s, t)) \cdot\left(\frac{\partial \mathbf{X}}{\partial s} \times \frac{\partial \mathbf{X}}{\partial t}\right) d s d t .
$$

Equivalently, $\iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}\left|\begin{array}{ccc}F_{1} & F_{2} & F_{3} \\ \frac{\partial X_{1}}{\partial s} & \frac{\partial X_{2}}{\partial s} & \frac{\partial X_{3}}{\partial s} \\ \frac{\partial X_{1}}{\partial t} & \frac{\partial X_{2}}{\partial t} & \frac{\partial X_{3}}{\partial t}\end{array}\right| d s d t$.

Surface integrals and reparametrization

Given two smooth parametrized surfaces $\mathbf{X}: D_{1} \rightarrow \mathbb{R}^{3}$ and $\mathbf{Y}: D_{2} \rightarrow \mathbb{R}^{3}$, we say that \mathbf{Y} is a smooth reparametrization of \mathbf{X} if there exists an invertible function $\mathbf{H}: D_{2} \rightarrow D_{1}$ such that $\mathbf{Y}=\mathbf{X} \circ \mathbf{H}$ and both \mathbf{H} and \mathbf{H}^{-1} are smooth.

Theorem 1 Any scalar surface integral is invariant under smooth reparametrizations.

Any smooth parametrization of a surface defines an orientation on it (continuous, unit normal vector field \mathbf{n}).

Theorem 2 Any vector surface integral is invariant under smooth orientation-preserving reparametrizations and changes its sign under orientation-reversing reparametrizations.

As a consequence, we can define the integral of a function over a non-parametrized smooth surface and the integral of a vector field along a non-parametrized, oriented smooth surface.

Problem. Let C denote the closed cylinder with bottom given by $z=0$, top given by $z=4$, and lateral surface given by $x^{2}+y^{2}=9$. We orient ∂C with outward normals. Find the integral of a vector field $\mathbf{F}(x, y, z)=x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}$ along ∂C.

To evaluate the integral, we cut the boundary ∂C into three parts: the top, the bottom and the lateral surface.
The top of the cylinder is parametrized by $\mathbf{X}_{\text {top }}: D \rightarrow \mathbb{R}^{3}$, $\mathbf{X}_{\text {top }}(x, y)=(x, y, 4)$, where

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 9\right\} .
$$

The bottom is parametrized by $\mathbf{X}_{\text {bot }}: D \rightarrow \mathbb{R}^{3}$,
$\mathbf{X}_{\text {bot }}(x, y)=(x, y, 0)$.
The lateral surface is parametrized by $\mathbf{X}_{\text {lat }}:[0,2 \pi] \times[0,4] \rightarrow \mathbb{R}^{3}, \quad \mathbf{X}_{\text {lat }}(\phi, z)=(3 \cos \phi, 3 \sin \phi, z)$.

We have $\frac{\partial \mathbf{X}_{\text {top }}}{\partial x}=(1,0,0), \frac{\partial \mathbf{X}_{\text {top }}}{\partial y}=(0,1,0)$. Hence $\frac{\partial \mathbf{X}_{\text {top }}}{\partial x} \times \frac{\partial \mathbf{X}_{\text {top }}}{\partial y}=\mathbf{e}_{1} \times \mathbf{e}_{2}=\mathbf{e}_{3}$.
Since $\mathbf{X}_{\text {bot }}=\mathbf{X}_{\text {top }}-(0,0,4)$, we also have $\frac{\partial \mathbf{X}_{\text {bot }}}{\partial x}=\mathbf{e}_{1}$, $\frac{\partial \mathbf{X}_{\text {bot }}}{\partial y}=\mathbf{e}_{2}$, and $\frac{\partial \mathbf{X}_{\text {bot }}}{\partial x} \times \frac{\partial \mathbf{X}_{\text {bot }}}{\partial y}=\mathbf{e}_{3}$.
Further, $\frac{\partial \mathbf{X}_{\text {lat }}}{\partial \phi}=(-3 \sin \phi, 3 \cos \phi, 0)$ and $\frac{\partial \mathbf{X}_{\text {lat }}}{\partial z}=(0,0,1)$.
Therefore
$\frac{\partial \mathbf{X}_{\text {lat }}}{\partial \phi} \times \frac{\partial \mathbf{X}_{\text {lat }}}{\partial z}=\left|\begin{array}{ccc}\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\ -3 \sin \phi & 3 \cos \phi & 0 \\ 0 & 0 & 1\end{array}\right|=(3 \cos \phi, 3 \sin \phi, 0)$.
We observe that $\mathbf{X}_{\text {top }}$ and $\mathbf{X}_{\text {lat }}$ agree with the orientation of the surface C while $\mathbf{X}_{\text {bot }}$ does not. It follows that

$$
\oiint_{\partial C} \mathbf{F} \cdot d \mathbf{S}=\iint_{\mathbf{X}_{\mathrm{top}}} \mathbf{F} \cdot d \mathbf{S}-\iint_{\mathbf{X}_{\mathrm{bot}}} \mathbf{F} \cdot d \mathbf{S}+\iint_{\mathbf{X}_{\mathrm{lat}}} \mathbf{F} \cdot d \mathbf{S} .
$$

Integrating the vector field $\mathbf{F}=x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}$ along each part of the boundary of C, we obtain:

$$
\begin{aligned}
& \iint_{\mathbf{X}_{\mathrm{top}}} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}(x, y, 4) \cdot(0,0,1) d x d y=\iint_{D} 4 d x d y=36 \pi \\
& \iint_{\mathbf{X}_{\mathrm{bot}}} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}(x, y, 0) \cdot(0,0,1) d x d y=\iint_{D} 0 d x d y=0 \\
& \iint_{\mathbf{X}_{\mathrm{lat}}} \mathbf{F} \cdot d \mathbf{S}=
\end{aligned}
$$

$$
=\iint_{[0,2 \pi] \times[0,4]}(3 \cos \phi, 3 \sin \phi, z) \cdot(3 \cos \phi, 3 \sin \phi, 0) d \phi d z
$$

$$
=\iint_{[0,2 \pi] \times[0,4]} 9 d \phi d z=72 \pi
$$

Thus $\oiint_{\partial C} \mathbf{F} \cdot d \mathbf{S}=36 \pi-0+72 \pi=108 \pi$.

Gauss's Theorem (a.k.a. Divergence Theorem in \mathbb{R}^{3})

Theorem Let $D \subset \mathbb{R}^{3}$ be a closed, bounded region with piecewise smooth boundary ∂D (not necessarily connected) oriented by outward unit normals to D. Then for any smooth vector field \mathbf{F} on D,

$$
\oiint_{\partial D} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \nabla \cdot \mathbf{F} d V .
$$

Corollary If a smooth vector field $\mathbf{F}: D \rightarrow \mathbb{R}^{3}$ has no divergence, $\nabla \cdot \mathbf{F}=0$, then $\oiint_{C} \mathbf{F} \cdot d \mathbf{S}=0$ for any closed, piecewise smooth surface C that bounds a subregion of D.

Gauss' Theorem

Proof in the case $D=[0,1] \times[0,1] \times[0,1]$ and $\mathbf{F}=(0,0, P)$:

$$
\int_{0}^{1} \frac{\partial P}{\partial z}(x, y, \zeta) d \zeta=P(x, y, 1)-P(x, y, 0)
$$

for any $x, y \in[0,1]$ due to the Fundamental Theorem of Calculus. Integrating this equality over the unit square $Q=[0,1] \times[0,1]$, we obtain

$$
\iiint_{D} \frac{\partial P}{\partial z} d V=\iint_{Q} P(x, y, 1) d x d y-\iint_{Q} P(x, y, 0) d x d y
$$

The first integral in the right-hand side equals the integral of the field \mathbf{F} along the top face $Q \times\{1\}$ of the cube D (oriented by the upward unit normals). The second integral equals the integral of \mathbf{F} along the bottom face $Q \times\{0\}$ (oriented likewise). Note that integrals of \mathbf{F} along the other faces of D are 0 (since \mathbf{F} is parallel to those faces). It follows that the entire right-hand side equals the integral of \mathbf{F} along ∂D.

Problem. Let C denote the closed cylinder with bottom given by $z=0$, top given by $z=4$, and lateral surface given by $x^{2}+y^{2}=9$. We orient ∂C with outward normals. Find the integral of a vector field $\mathbf{F}(x, y, z)=x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}$ along ∂C.

This time, let us use Gauss' Theorem:

$$
\begin{array}{rl}
\oiint_{\partial C} & \mathbf{F} \cdot d \mathbf{S}=\iiint_{C} \nabla \cdot \mathbf{F} d V \\
& =\iiint \int_{C}\left(\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}(y)+\frac{\partial}{\partial z}(z)\right) d x d y d z \\
& =\iiint_{C} 3 d x d y d z=3 \text { volume }(C)=108 \pi
\end{array}
$$

Stokes's Theorem

Suppose S is an oriented surface in \mathbb{R}^{3} bounded by an oriented curve ∂S. We say that ∂S is oriented consistently with S if, as one traverses ∂S, the surface S is on the left when looking down from the tip of \mathbf{n}, the unit normal vector indicating the orientation of S.

Theorem Let $S \subset \mathbb{R}^{3}$ be a bounded, piecewise smooth oriented surface with piecewise smooth boundary ∂S oriented consistently with S. Then for any smooth vector field \mathbf{F} on S,

$$
\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{s} .
$$

Corollary If the surface S is closed (i.e., has no boundary), then for any smooth vector field \mathbf{F} on S,

$$
\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}=0 .
$$

Example

Suppose that a bounded, piecewise smooth surface $S \subset \mathbb{R}^{3}$ is contained in the $x y$-coordinate plane, that is, $S=D \times\{0\}$ for a domain $D \subset \mathbb{R}^{2}$. We orient S by the upward unit normal vector $\mathbf{n}=(0,0,1)$ and orient the boundary $\partial S=\partial D \times\{0\}$ consistently with S. Further, suppose that \mathbf{F} is a horizontal vector field, $\mathbf{F}=(M, N, 0)$. By Stokes' Theorem,

$$
\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{s}
$$

Recall that $\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}=\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} d S$. We obtain

$$
\operatorname{curl}(\mathbf{F}) \cdot \mathbf{n}=\left|\begin{array}{ccc}
0 & 0 & 1 \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M & N & 0
\end{array}\right|=\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y} .
$$

It follows that this particular case of Stokes' Theorem is equivalent to Green's Theorem.

