MATH 311
 Topics in Applied Mathematics I

Lecture 6:
 Determinants.

Determinants

Determinant is a scalar assigned to each square matrix.
Notation. The determinant of a matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ is denoted $\operatorname{det} A$ or

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right| .
$$

Principal property: $\operatorname{det} A \neq 0$ if and only if a system of linear equations with the coefficient matrix A has a unique solution. Equivalently, $\operatorname{det} A \neq 0$ if and only if the matrix A is invertible.

Definition in low dimensions

Definition. $\operatorname{det}(a)=a, \quad\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$,
\(\left|\begin{array}{lll}a_{11} \& a_{12} \& a_{13}

a_{21} \& a_{22} \& a_{23}

a_{31} \& a_{32} \& a_{33}\end{array}\right|=\)| |
| ---: |
| |
| |
| |
| $-a_{11} a_{22} a_{22} a_{31}+a_{12} a_{23} a_{31}+a_{12} a_{21} a_{33}-a_{11} a_{32} a_{23} a_{32}$. |

$+:\left(\begin{array}{ccc}\boxed{*} & * & * \\ * & * & * \\ * & * & \boxed{*}\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right)$.
$-:\left(\begin{array}{ccc}* & * & * \\ * & \boxed{*} & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right)$.

Examples: 2×2 matrices

$$
\begin{aligned}
& \left|\begin{array}{rr}
1 & 0 \\
0 & 1
\end{array}\right|=1, \quad\left|\begin{array}{rr}
3 & 0 \\
0 & -4
\end{array}\right|=-12, \\
& \left|\begin{array}{rr}
-2 & 5 \\
0 & 3
\end{array}\right|=-6, \quad\left|\begin{array}{ll}
7 & 0 \\
5 & 2
\end{array}\right|=14, \\
& \left|\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right|=1, \quad\left|\begin{array}{ll}
0 & 0 \\
4 & 1
\end{array}\right|=0, \\
& \left|\begin{array}{rr}
-1 & 3 \\
-1 & 3
\end{array}\right|=0, \quad\left|\begin{array}{ll}
2 & 1 \\
8 & 4
\end{array}\right|=0 .
\end{aligned}
$$

Examples: 3×3 matrices

$$
\begin{aligned}
& \left|\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right|=3 \cdot 0 \cdot 0+(-2) \cdot 1 \cdot(-2)+0 \cdot 1 \cdot 3- \\
& -0 \cdot 0 \cdot(-2)-(-2) \cdot 1 \cdot 0-3 \cdot 1 \cdot 3=4-9=-5, \\
& \left|\begin{array}{rrr}
1 & 4 & 6 \\
0 & 2 & 5 \\
0 & 0 & 3
\end{array}\right|=1 \cdot 2 \cdot 3+4 \cdot 5 \cdot 0+6 \cdot 0 \cdot 0- \\
& -6 \cdot 2 \cdot 0-4 \cdot 0 \cdot 3-1 \cdot 5 \cdot 0=1 \cdot 2 \cdot 3=6 .
\end{aligned}
$$

General definition

The general definition of the determinant is quite complicated as there is no simple explicit formula.

There are several approaches to defining determinants. Approach 1 (original): an explicit (but very complicated) formula.
Approach 2 (axiomatic): we formulate properties that the determinant should have.
Approach 3 (inductive): the determinant of an $n \times n$ matrix is defined in terms of determinants of certain $(n-1) \times(n-1)$ matrices.

Axiomatic definition

$\mathcal{M}_{n, n}(\mathbb{R})$: the set of $n \times n$ matrices with real entries.
Theorem There exists a unique function $\operatorname{det}: \mathcal{M}_{n, n}(\mathbb{R}) \rightarrow \mathbb{R}$ (called the determinant) with the following properties:
(D1) if a row of a matrix is multiplied by a scalar r, the determinant is also multiplied by r;
(D2) if we add a row of a matrix multiplied by a scalar to another row, the determinant remains the same;
(D3) if we interchange two rows of a matrix, the determinant changes its sign;
(D4) $\operatorname{det} I=1$.

Corollary 1 Suppose A is a square matrix and B is obtained from A applying elementary row operations. Then $\operatorname{det} A=0$ if and only if $\operatorname{det} B=0$.

Corollary 2 det $B=0$ whenever the matrix B has a zero row.

Hint: Multiply the zero row by the zero scalar.
Corollary $3 \operatorname{det} A=0$ if and only if the matrix A is not invertible.

Idea of the proof: Let B be the reduced row echelon form of A. If A is invertible then $B=I$; otherwise B has a zero row.

Remark. The same argument proves that properties (D1)-(D4) are enough to evaluate any determinant.

Row echelon form of a square matrix A :

$\operatorname{det} A \neq 0$

$\operatorname{det} A=0$

Example. $\quad A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right), \operatorname{det} A=$?
Earlier we have transformed the matrix A into the identity matrix using elementary row operations:

- interchange the 1 st row with the 2 nd row,
- add -3 times the 1 st row to the 2 nd row,
- add 2 times the 1 st row to the 3 rd row,
- multiply the 2 nd row by -0.5 ,
- add -3 times the 2 nd row to the 3 rd row,
- multiply the 3 rd row by -0.4 ,
- add -1.5 times the 3 rd row to the 2 nd row,
- add -1 times the 3 rd row to the 1 st row.

Example. $\quad A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right), \operatorname{det} A=$?
Earlier we have transformed the matrix A into the identity matrix using elementary row operations.
These included two row multiplications, by -0.5 and by -0.4 , and one row exchange.

It follows that

$$
\operatorname{det} I=-(-0.5)(-0.4) \operatorname{det} A=(-0.2) \operatorname{det} A \text {. }
$$

Hence $\operatorname{det} A=-5 \operatorname{det} I=-5$.

Other properties of determinants

- If a matrix A has two identical rows then $\operatorname{det} A=0$.

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
a_{1} & a_{2} & a_{3}
\end{array}\right|=\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
0 & 0 & 0
\end{array}\right|=0 .
$$

- If a matrix A has two proportional rows then $\operatorname{det} A=0$.

$$
\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
r a_{1} & r a_{2} & r a_{3}
\end{array}\right|=r\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
a_{1} & a_{2} & a_{3}
\end{array}\right|=0 .
$$

Definition. A square matrix $A=\left(a_{i j}\right)$ is called upper triangular if all entries below the main diagonal are zeros: $a_{i j}=0$ whenever $i>j$.

- The determinant of an upper triangular matrix is equal to the product of its diagonal entries.

$$
\left|\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right|=a_{11} a_{22} a_{33}
$$

- If $A=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ then $\operatorname{det} A=d_{1} d_{2} \ldots d_{n}$. In particular, $\operatorname{det} I=1$.

Determinant of the transpose

- If A is a square matrix then $\operatorname{det} A^{T}=\operatorname{det} A$.

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

As a consequence, for every property of determinants involving rows of a matrix there is an analogous property involving columns of a matrix.

Columns vs. rows

- If one column of a matrix is multiplied by a scalar, the determinant is multiplied by the same scalar.
- Interchanging two columns of a matrix changes the sign of its determinant.
- If a matrix A has two columns proportional then $\operatorname{det} A=0$.
- Adding a scalar multiple of one column to another does not change the determinant of a matrix.

Submatrices

Definition. Given a matrix A, a $k \times k$ submatrix of A is a matrix obtained by specifying k columns and k rows of A and deleting the other columns and rows.

$$
\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
10 & 20 & 30 & 40 \\
3 & 5 & 7 & 9
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
* & 2 & * & 4 \\
* & * & * & * \\
* & 5 & * & 9
\end{array}\right) \rightarrow\left(\begin{array}{ll}
2 & 4 \\
5 & 9
\end{array}\right)
$$

Row and column expansions

Given an $n \times n$ matrix $A=\left(a_{i j}\right)$, let $M_{i j}$ denote the $(n-1) \times(n-1)$ submatrix obtained by deleting the i th row and the j th column of A.

Theorem For any $1 \leq k, m \leq n$ we have that

$$
\operatorname{det} A=\sum_{j=1}^{n}(-1)^{k+j} a_{k j} \operatorname{det} M_{k j}
$$

(expansion by k-th row)

$$
\operatorname{det} A=\sum_{i=1}^{n}(-1)^{i+m} a_{i m} \operatorname{det} M_{i m}
$$

(expansion by m-th column)

Signs for row/column expansions

$$
\left(\begin{array}{ccccc}
+ & - & + & - & \cdots \\
- & + & - & + & \cdots \\
+ & - & + & - & \cdots \\
- & + & - & + & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Example. $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$.
Expansion by the 1st row:

$$
\left(\begin{array}{ccc}
\boxed{1} & * & * \\
* & 5 & 6 \\
* & 8 & 9
\end{array}\right)\left(\begin{array}{ccc}
* & \boxed{2} & * \\
4 & * & 6 \\
7 & * & 9
\end{array}\right)\left(\begin{array}{ccc}
* & * & \boxed{3} \\
4 & 5 & * \\
7 & 8 & *
\end{array}\right)
$$

$\operatorname{det} A=1\left|\begin{array}{ll}5 & 6 \\ 8 & 9\end{array}\right|-2\left|\begin{array}{ll}4 & 6 \\ 7 & 9\end{array}\right|+3\left|\begin{array}{ll}4 & 5 \\ 7 & 8\end{array}\right|$
$=(5 \cdot 9-6 \cdot 8)-2(4 \cdot 9-6 \cdot 7)+3(4 \cdot 8-5 \cdot 7)=0$.

Example. $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$.
Expansion by the 2nd column:
$\left(\begin{array}{lll}* & 2 & * \\ 4 & * & 6 \\ 7 & * & 9\end{array}\right)\left(\begin{array}{ccc}1 & * & 3 \\ * & 5 & * \\ 7 & * & 9\end{array}\right)\left(\begin{array}{ccc}1 & * & 3 \\ 4 & * & 6 \\ * & 8 & *\end{array}\right)$
$\operatorname{det} A=-2\left|\begin{array}{ll}4 & 6 \\ 7 & 9\end{array}\right|+5\left|\begin{array}{ll}1 & 3 \\ 7 & 9\end{array}\right|-8\left|\begin{array}{ll}1 & 3 \\ 4 & 6\end{array}\right|$
$=-2(4 \cdot 9-6 \cdot 7)+5(1 \cdot 9-3 \cdot 7)-8(1 \cdot 6-3 \cdot 4)=0$.

Example. $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$.
Subtract the 1st row from the 2nd row and from the 3 rd row:

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right|=\left|\begin{array}{lll}
1 & 2 & 3 \\
3 & 3 & 3 \\
7 & 8 & 9
\end{array}\right|=\left|\begin{array}{lll}
1 & 2 & 3 \\
3 & 3 & 3 \\
6 & 6 & 6
\end{array}\right|=0
$$

since the last matrix has two proportional rows.

Evaluation of determinants

Example. $\quad B=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 13\end{array}\right)$.
First let's do some row reduction.
Add -4 times the 1 st row to the 2 nd row:

$$
\left|\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 13
\end{array}\right|=\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
7 & 8 & 13
\end{array}\right|
$$

Add -7 times the 1st row to the 3rd row:

$$
\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
7 & 8 & 13
\end{array}\right|=\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -8
\end{array}\right|
$$

$$
\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
7 & 8 & 13
\end{array}\right|=\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -8
\end{array}\right|
$$

Expand the determinant by the 1st column:

$$
\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -8
\end{array}\right|=1\left|\begin{array}{ll}
-3 & -6 \\
-6 & -8
\end{array}\right|
$$

Thus

$$
\begin{gathered}
\operatorname{det} B=\left|\begin{array}{ll}
-3 & -6 \\
-6 & -8
\end{array}\right|=(-3)\left|\begin{array}{rr}
1 & 2 \\
-6 & -8
\end{array}\right| \\
=(-3)(-2)\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|=(-3)(-2)(-2)=-12 .
\end{gathered}
$$

Example. $C=\left(\begin{array}{rrrr}2 & -2 & 0 & 3 \\ -5 & 3 & 2 & 1 \\ 1 & -1 & 0 & -3 \\ 2 & 0 & 0 & -1\end{array}\right), \operatorname{det} C=$?
Expand the determinant by the 3 rd column:

$$
\left|\begin{array}{rrrr}
2 & -2 & 0 & 3 \\
-5 & 3 & 2 & 1 \\
1 & -1 & 0 & -3 \\
2 & 0 & 0 & -1
\end{array}\right|=-2\left|\begin{array}{rrr}
2 & -2 & 3 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|
$$

Add -2 times the 2 nd row to the 1 st row:

$$
\operatorname{det} C=-2\left|\begin{array}{rrr}
2 & -2 & 3 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|=-2\left|\begin{array}{rrr}
0 & 0 & 9 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|
$$

$$
\operatorname{det} C=-2\left|\begin{array}{rrr}
2 & -2 & 3 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|=-2\left|\begin{array}{rrr}
0 & 0 & 9 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|
$$

Expand the determinant by the 1st row:

$$
\operatorname{det} C=-2\left|\begin{array}{rrr}
0 & 0 & 9 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|=-2 \cdot 9\left|\begin{array}{rr}
1 & -1 \\
2 & 0
\end{array}\right|
$$

Thus

$$
\operatorname{det} C=-18\left|\begin{array}{rr}
1 & -1 \\
2 & 0
\end{array}\right|=-18 \cdot 2=-36
$$

Problem. For what values of a will the following system have a unique solution?
$\left\{\begin{array}{l}x+2 y+z=1 \\ -x+4 y+2 z=2 \\ 2 x-2 y+a z=3\end{array}\right.$
The system has a unique solution if and only if the coefficient matrix is invertible.
$A=\left(\begin{array}{rrr}1 & 2 & 1 \\ -1 & 4 & 2 \\ 2 & -2 & a\end{array}\right), \quad \operatorname{det} A=$?
$A=\left(\begin{array}{rrr}1 & 2 & 1 \\ -1 & 4 & 2 \\ 2 & -2 & a\end{array}\right), \quad \operatorname{det} A=?$
Add -2 times the 3 rd column to the 2 nd column:

$$
\left|\begin{array}{rrr}
1 & 2 & 1 \\
-1 & 4 & 2 \\
2 & -2 & a
\end{array}\right|=\left|\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 0 & 2 \\
2 & -2-2 a & a
\end{array}\right|
$$

Expand the determinant by the 2 nd column:
$\operatorname{det} A=\left|\begin{array}{rcc}1 & 0 & 1 \\ -1 & 0 & 2 \\ 2 & -2-2 a & a\end{array}\right|=-(-2-2 a)\left|\begin{array}{rr}1 & 1 \\ -1 & 2\end{array}\right|$
Hence $\operatorname{det} A=-(-2-2 a) \cdot 3=6(1+a)$.
Thus A is invertible if and only if $a \neq-1$.

More properties of determinants

Determinants and matrix multiplication:

- if A and B are $n \times n$ matrices then

$$
\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B ;
$$

- if A and B are $n \times n$ matrices then

$$
\operatorname{det}(A B)=\operatorname{det}(B A)
$$

- if A is an invertible matrix then

$$
\operatorname{det}\left(A^{-1}\right)=(\operatorname{det} A)^{-1}
$$

Determinants and scalar multiplication:

- if A is an $n \times n$ matrix and $r \in \mathbb{R}$ then

$$
\operatorname{det}(r A)=r^{n} \operatorname{det} A
$$

Examples

$$
X=\left(\begin{array}{rrr}
-1 & 2 & 1 \\
0 & 2 & -2 \\
0 & 0 & -3
\end{array}\right), \quad Y=\left(\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 3 & 0 \\
2 & -2 & 1
\end{array}\right)
$$

$\operatorname{det} X=(-1) \cdot 2 \cdot(-3)=6, \quad \operatorname{det} Y=\operatorname{det} Y^{T}=3$, $\operatorname{det}(X Y)=6 \cdot 3=18, \quad \operatorname{det}(Y X)=3 \cdot 6=18$, $\operatorname{det}\left(Y^{-1}\right)=1 / 3, \quad \operatorname{det}\left(X Y^{-1}\right)=6 / 3=2$, $\operatorname{det}\left(X Y X^{-1}\right)=\operatorname{det} Y=3, \quad \operatorname{det}\left(X^{-1} Y^{-1} X Y\right)=1$, $\operatorname{det}(2 X)=2^{3} \operatorname{det} X=2^{3} \cdot 6=48$, $\operatorname{det}\left(-3 X^{T} X Y^{-4}\right)=(-3)^{3} \cdot 6 \cdot 6 \cdot 3^{-4}=-12$.

Let us try to find a solution of a general system of 2 linear equations in 2 variables:

$$
\left\{\begin{array}{l}
a_{11} x+a_{12} y=b_{1}, \\
a_{21} x+a_{22} y=b_{2} .
\end{array}\right.
$$

Solve the 1st equation for x : $x=\left(b_{1}-a_{12} y\right) / a_{11}$. Substitute into the 2nd equation:

$$
a_{21}\left(b_{1}-a_{12} y\right) / a_{11}+a_{22} y=b_{2} .
$$

Solve for $y: y=\frac{a_{11} b_{2}-a_{21} b_{1}}{a_{11} a_{22}-a_{12} a_{21}}$.
Back substitution: $x=\left(b_{1}-a_{12} y\right) / a_{11}=\frac{a_{22} b_{1}-a_{12} b_{2}}{a_{11} a_{22}-a_{12} a_{21}}$.
Thus

$$
x=\frac{\left|\begin{array}{ll}
b_{1} & a_{12} \\
b_{2} & a_{22}
\end{array}\right|}{\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|}, \quad y=\frac{\left|\begin{array}{ll}
a_{11} & b_{1} \\
a_{21} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|} .
$$

Cramer's rule

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots+a_{n n} x_{n}=b_{n}
\end{array}\right.
$$

$$
\Longleftrightarrow A \mathbf{x}=\mathbf{b}
$$

Theorem Assume that the matrix A is invertible.
Then the only solution of the system is given by

$$
x_{i}=\frac{\operatorname{det} A_{i}}{\operatorname{det} A}, \quad i=1,2, \ldots, n
$$

where the matrix A_{i} is obtained by substituting the vector \mathbf{b} for the i th column of A.

Determinants and the inverse matrix

Given an $n \times n$ matrix $A=\left(a_{i j}\right)$, let $M_{i j}$ denote the $(n-1) \times(n-1)$ submatrix obtained by deleting the i th row and the j th column of A. The cofactor matrix of A is an $n \times n$ matrix $\widetilde{A}=\left(\alpha_{i j}\right)$ defined by $\alpha_{i j}=(-1)^{i+j} \operatorname{det} M_{i j}$.

Theorem $\widetilde{A}^{T} A=A \widetilde{A}^{T}=(\operatorname{det} A) I$.
Sketch of the proof: $A \widetilde{A}^{T}=(\operatorname{det} A) I$ means that

$$
\begin{aligned}
& \sum_{j=1}^{n}(-1)^{k+j} a_{k j} \operatorname{det} M_{k j}=\operatorname{det} A \quad \text { for all } k \\
& \sum_{j=1}^{n}(-1)^{k+j} a_{m j} \operatorname{det} M_{k j}=0 \quad \text { for } m \neq k
\end{aligned}
$$

Indeed, the 1 st equality is the expansion of $\operatorname{det} A$ by the k th row. The 2 nd equality is an analogous expansion of $\operatorname{det} B$, where the matrix B is obtained from A by replacing its k th row with a copy of the m th row (clearly, $\operatorname{det} B=0$). $\widetilde{A}^{T} A=(\operatorname{det} A) /$ is verified similarly, using column expansions.
Corollary If $\operatorname{det} A \neq 0$ then $A^{-1}=(\operatorname{det} A)^{-1} \widetilde{A}^{T}$.

