MATH 311
Topics in Applied Mathematics |
Lecture 9:

Linear independence.
Basis of a vector space.



Spanning set
Let S be a subset of a vector space V.

Definition. The span of the set S is the smallest
subspace W C V that contains S. If S is not
empty then W = Span(S) consists of all linear
combinations |riv; + rvy 4 - - - + rvy | such that
Vi,...,.Vvx €S and n,...,r € R,

We say that the set S spans the subspace W or
that S is a spanning set for W/.

Remarks. e If S; is a spanning set for a vector space V and
51 C S5 CV, then S, is also a spanning set for V.

e If vo,vy,..., v, is a spanning set for V and vgq is a linear
combination of vectors vq,...,v, then vi,...,v, is also a
spanning set for V.



Linear independence

Definition. Let V be a vector space. Vectors
Vi,Vo,...,Vx € V are called linearly dependent
if they satisfy a relation

nvi—+ vy + -+ nve =0,

where the coefficients ri,...,r € R are not all
equal to zero. Otherwise vectors vi,Vy, ...,V are
called linearly independent. That is, if
nvi+nvo+ - -4+nvy=0 — n=---=r=0.

A set S C V is linearly dependent if one can find
some distinct linearly dependent vectors vy, ..., v
in S. Otherwise S is linearly independent.



Examples of linear independence

e Vectors e; =(1,0,0), e, =(0,1,0), and
es = (0,0,1) in R3.

xe;+ye,+ze3=0 = (x,y,2)=0

e Matrices Ej; = ((1) 8) Eip = (8 é)

00 00
E21— <1 O), and E22— (O 1)

aEi1 + bEyy + cExy + dExy = 0 — (i Z) =0

= a=b=c=d=0



Examples of linear independence

e Polynomials 1,x,x? ..., x".

ag+ a1x + apx®> + -+ a,x" =0 identically
= g3,=0 for 0<i<n

e The infinite set {1,x,x2,...,x",...}.

Y

e Polynomials p;(x) =1, po(x) =x—1, and
po(x) = (x — 1)

a1p1(x) + axpa(x) + asps(x) = a1 + ax(x — 1) + a3z(x — 1)? =
= (a1 — a + a3) + (a2 — 2a3)x + asx’.

Hence aipi(x)+ axpa(x) + asps(x) = 0 identically

— g —a&ataz=a —2a3=a3=0

— g =a=a=0



Problem Let v; =(1,2,0), vo =(3,1,1), and
vz = (4,—7,3). Determine whether vectors
V1, Vs, V3 are linearly independent.

We have to check if there exist r, rn, 3 € R not all
zero such that vy + vy + vy = 0.
This vector equation is equivalent to a system

n+3n+4rs=20 1 3 410
2n+rn—7rs=0 21 —-7|0
Or1+r2+3r3:0 01 310

The vectors vi, vy, v3 are linearly dependent if and
only if the coefficient matrix A = (v, v, v3) is
singular. We obtain that det A =0 (it is singular).



Theorem The following conditions are equivalent:
(i) vectors vi,..., v, are linearly dependent;
(ii) one of vectors vy, ..., v, is a linear
combination of the other kK — 1 vectors.
Proof: (i) = (ii) Suppose that

nvi+ nvs + -+ nve =0,
where r; 20 for some 1 </ < k. Then

(ii) = (i) Suppose that
Vi = S§V1 + -+ S 1Vio1 + SipaVip1r + - SV
for some scalars s;.  Then

SIV1+ o+ Si_1Vimr — Vi + SipaVig1 + -+ sev = 0.



-1 1
-1 0

matrices A, A2, and A3 are linearly independent.

Problem. Let A :( ) Determine whether

(11 » (0 —1 3 10
We have A—(_l O)’ Ac = <1 _1), A —0<0 1).

The task is to check if there exist r1, rn, 3 € R not all zero
such that nA+ nA? 4+ A3 = O.
This matrix equation is equivalent to a system

—n —|—0f2 + = 0 -1 0 1|0 1 -1 0
rn—rn+0rn=0 1 -1 0]0 . 0 1 -1
—n+n+0n=0 -1 1 010 0 0 O
On—n+rn=20 0 -1 1|0 0O 0 O

The row echelon form of the augmented matrix shows there is
a free variable. Hence the system has a nonzero solution so
that the matrices are linearly dependent (one relation is

A+ A2+ A3 = 0).

O O O o



Problem. Show that functions e*, e?*, and &3*
are linearly independent in C*°(R).

Suppose that aeX + be®* + ce> =0 for all x € R, where
a, b, ¢ are constants. We have to show that a=b=c =0.

Differentiate this identity twice:
ae* + be* + ce® =0,
ae* + 2be* + 3ce®* =0,
aeX + 4be* + 9ce® = 0.

It follows that A(x)v = 0, where

eX er e3x P

Ax)= | e 2e* 3e* |, v=|[b
eX 4e> Q9e3x c



(S e a
Ax)= [ e 2e> 3e¥> |, v=|[b
X 4e?* Qge¥ c
1 e e 11
det A(x) =eX|1 2> 3e¥ | =eXe® |1 2
1 4e?* 9e3 1 4
111 1 11
=eXe>e¥ |1 2 3| =e%|1 2 3| =e¥
1 49 1 4 9
111
=e|0 1 2| =¥ ; g‘:2e6x7£0.
0 3 8

Since the matrix A(x) is invertible, we obtain
Axv=0 = v=0 = a=b=c=0

O N =



Wronskian

Let fi,f,...,f, be smooth functions on an interval
[a, b]. The Wronskian W{f, f, ... f] is a
function on [a, b] defined by

A9 A0 7()
WIA, f,.... £](x) = 1(x) 2(:X) ,,(.x)
00 B0 e T

Theorem If W[f,f,..., f](x) # 0 for some
Xo € [a, b] then the functions fi, f, ..., f, are
linearly independent in C|a, b].



Basis

Definition. Let V be a vector space. Any linearly
independent spanning set for V' is called a basis.

Suppose that a set S C V is a basis for V.

“Spanning set” means that any vector v € V can be
represented as a linear combination

V = vy + nvy + -+ Vg,
where vy, ..., v, are distinct vectors from S and

r,...,re € R, “Linearly independent” implies that the above
representation is unique:

V=rVi+nV+ -+ Vg =rvy+ nv, + -+ rvg
= (n—rvit(n—rva+---+(rn—r)vk=0

— n—-n=n—-rn=...=rn—r.=0



Examples. e Standard basis for R":
e; =(1,0,0,...,0,0), e, =(0,1,0,...,0,0),...,
e, =(0,0,0,...,0,1).

Indeed, (xi,X2,...,X,) = Xx1€1 + X2€3 + - - - + X,€,.

e (32).(63)(2)- ()

form a basis for M ,(R).

(2 a) =0 0) 20 0) <3 0) oo 3)

e Polynomials 1, x,x?,...,x""! form a basis for

Pp={ao+ax+--+a,1x":a €R}L

e The infinite set {1,x,x2%,...,x",...} is a basis
for P, the space of all polynomials.



Let v,vi,vo,....vp, € R" and r,n, ..., rx € R,
The vector equation rvi+nvo+---+rnvy =V is
equivalent to the matrix equation Ax = v, where

rn
A= (vi,vo, ..., V), X =
rk
an a2 Ak by
an an ELY b,
n ) +nrn ) + o+ ) = ) <~
anl dn2 dnk bn
di1 di2 ... a1k rn b1
dy1 dx» ... ax r b,
) ] _ i ) = ) — Ax=v
apl a2 ... ank re b,



Let v,vi,vo,....vp, € R" and i, m, ..., rx € R,
The vector equation rvi+nvo+---+rvy =V is
equivalent to the matrix equation Ax = v, where

rn
A= (vi,vo, ..., V), X =
rg
That is, A is the nx k matrix such that vectors vy, vy, ..., v,
are consecutive columns of A.
e \Vectors vq,...,v, span R" if the row echelon
form of A has no zero rows.
e \Vlectors vi,...,vi are linearly independent if

the row echelon form of A has a leading entry in
each column (no free variables).



spanning no spanning
linear independence linear independence

D * * * *

*
*
*
*

spanning no spanning
no linear independence no linear independence



Bases for R”

Let vq,vy,..., v, be vectors in R”.

Theorem 1 If kK < n then the vectors
Vi,Vo,...,V, do not span R”".

Theorem 2 If kK > n then the vectors
V1,Vo, ...,V are linearly dependent.

Theorem 3 If kK = n then the following conditions
are equivalent:

(i) {vi,v2,...,v,} is a basis for R”;

(ii) {v1,v2,...,v,} is a spanning set for R";

(iii) {vi,v2,...,v,} is a linearly independent set.



Example. Consider vectors v; = (1, —1,1),
vo = (1,0,0), v3 = (1,1,1), and v4 = (1,2,4) in R3.

Vectors v; and v, are linearly independent (as they
are not parallel), but they do not span R3,

Vectors vi, vy, v3 are linearly independent since

111 1
~101 :—| 11|:—(—2):2;A0.
10 1

Therefore {v1,vo,v3} is a basis for R3.

Vectors vy, Vo, v3,v4 span R (because v, va, v3
already span R3), but they are linearly dependent.



Dimension

Theorem 1 Any vector space has a basis.

Theorem 2 If a vector space V has a finite basis,
then all bases for V are finite and have the same
number of elements.

Definition. The dimension of a vector space V,
denoted dim V/, is the number of elements in any of
its bases.



Examples. o dimR" = n

e Mj(R): the space of 2x2 matrices
dim MQ,Q(R) =4

o M, n(R): the space of mxn matrices
dim M, ,(R) = mn

e P,: polynomials of degree less than n
dm?P,=n

e P: the space of all polynomials

dimP = oo

e {0}: the trivial vector space

dim {0} =0



