
MATH 311

Topics in Applied Mathematics I

Lecture 18:

Orthogonal projection (continued).
Least squares problems.

Norm of a vector.



Orthogonal complement

Definition. Let S ⊂ R
n. The orthogonal

complement of S , denoted S⊥, is the set of all
vectors x ∈ R

n that are orthogonal to S .

Theorem 1 (i) S⊥ is a subspace of Rn.

(ii) (S⊥)⊥ = Span(S).

Theorem 2 If V is a subspace of Rn, then

(i) (V⊥)⊥ = V ,
(ii) V ∩ V⊥ = {0},
(iii) dimV + dimV⊥ = n.

Theorem 3 If V is the row space of a matrix, then
V⊥ is the nullspace of the same matrix.
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Orthogonal projection

Theorem 1 Let V be a subspace of Rn. Then
any vector x ∈ R

n is uniquely represented as

x = p+ o, where p ∈ V and o ∈ V⊥.

In the above expansion, p is called the orthogonal
projection of the vector x onto the subspace V .

If V is a line spanned by a vector y then p =
x · y
y · y y.

Theorem 2 ‖x− v‖ > ‖x− p‖ for any v 6= p in V .

Thus ‖o‖ = ‖x− p‖ = min
v∈V

‖x− v‖ is the

distance from the vector x to the subspace V .
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Problem. Let Π be the plane spanned by vectors
v1 = (1, 1, 0) and v2 = (0, 1, 1).

(i) Find the orthogonal projection of the vector
x = (4, 0,−1) onto the plane Π.

(ii) Find the distance from x to Π.

We have x = p+ o, where p ∈ Π and o ⊥ Π.
Then the orthogonal projection of x onto Π is p and

the distance from x to Π is ‖o‖.
We have p = αv1 + βv2 for some α, β ∈ R.
Then o = x− p = x− αv1 − βv2.
{

o · v1 = 0

o · v2 = 0
⇐⇒

{

α(v1 · v1) + β(v2 · v1) = x · v1
α(v1 · v2) + β(v2 · v2) = x · v2



x = (4, 0,−1), v1 = (1, 1, 0), v2 = (0, 1, 1)

{

α(v1 · v1) + β(v2 · v1) = x · v1
α(v1 · v2) + β(v2 · v2) = x · v2

⇐⇒
{

2α+ β = 4

α + 2β = −1
⇐⇒

{

α = 3

β = −2

p = 3v1 − 2v2 = (3, 1,−2)

o = x− p = (1,−1, 1)

‖o‖ =
√
3



Problem. Let Π be the plane spanned by vectors
v1 = (1, 1, 0) and v2 = (0, 1, 1).

(i) Find the orthogonal projection of the vector
x = (4, 0,−1) onto the plane Π.
(ii) Find the distance from x to Π.

Alternative solution: We have x = p+ o, where p ∈ Π and
o ⊥ Π. Then the orthogonal projection of x onto Π is p and
the distance from x to Π is ‖o‖.
Notice that o is the orthogonal projection of x onto the
orthogonal complement Π⊥. In the previous lecture, we found
that Π⊥ is the line spanned by the vector y = (1,−1, 1). It
follows that

o =
x · y
y · y y =

3

3
(1,−1, 1) = (1,−1, 1).

Then p = x− o = (4, 0,−1)− (1,−1, 1) = (3, 1,−2) and
‖o‖ =

√
3.



Overdetermined system of linear equations:






x + 2y = 3

3x + 2y = 5
x + y = 2.09

⇐⇒







x + 2y = 3

−4y = −4
−y = −0.91

No solution: inconsistent system

Assume that a solution (x0, y0) does exist but the

system is not quite accurate, namely, there may be
some errors in the right-hand sides.

Problem. Find a good approximation of (x0, y0).

One approach is the least squares fit. Namely,
we look for a pair (x , y) that minimizes the sum

(x + 2y − 3)2 + (3x + 2y − 5)2 + (x + y − 2.09)2.



Least squares solution

System of linear equations:














a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · ·
am1x1 + am2x2 + · · ·+ amnxn = bm

⇐⇒ Ax = b

For any x ∈ R
n define a residual r(x) = b− Ax.

The least squares solution x to the system is the

one that minimizes ‖r(x)‖ (or, equivalently, ‖r(x)‖2).

‖r(x)‖2 =
m
∑

i=1

(ai1x1 + ai2x2 + · · ·+ ainxn − bi)
2



Let A be an m×n matrix and let b ∈ R
m.

Theorem A vector x̂ is a least squares solution of

the system Ax = b if and only if it is a solution of

the associated normal system ATAx = ATb.

Proof: Ax is an arbitrary vector in R(A), the column space of
A. Hence the length of r(x) = b− Ax is minimal if Ax is the
orthogonal projection of b onto R(A). That is, if r(x) is
orthogonal to R(A).

We know that {row space}⊥ = {nullspace} for any matrix.
In particular, R(A)⊥ = N(AT ), the nullspace of the transpose
matrix of A. Thus x̂ is a least squares solution if and only if

AT r(x̂) = 0 ⇐⇒ AT (b− Ax̂) = 0 ⇐⇒ ATAx̂ = ATb.

Corollary The normal system ATAx = ATb is
always consistent.



Problem. Find the least squares solution to






x + 2y = 3
3x + 2y = 5

x + y = 2.09




1 2

3 2
1 1





(

x

y

)

=





3

5
2.09





(

1 3 1
2 2 1

)





1 2
3 2

1 1





(

x

y

)

=

(

1 3 1
2 2 1

)





3
5

2.09





(

11 9

9 9

)(

x

y

)

=

(

20.09

18.09

)

⇐⇒
{

x = 1

y = 1.01



Problem. Find the constant function that is the
least squares fit to the following data

x 0 1 2 3

f (x) 1 0 1 2

f (x) = c =⇒















c = 1
c = 0
c = 1
c = 2

=⇒









1
1
1
1









(c) =









1
0
1
2









(1, 1, 1, 1)









1
1
1
1









(c) = (1, 1, 1, 1)









1
0
1
2









c = 1

4
(1 + 0 + 1 + 2) = 1 (mean arithmetic value)



Problem. Find the linear polynomial that is the
least squares fit to the following data

x 0 1 2 3

f (x) 1 0 1 2

f (x) = c1 + c2x =⇒















c1 = 1
c1 + c2 = 0
c1 + 2c2 = 1
c1 + 3c2 = 2

=⇒









1 0
1 1
1 2
1 3









(

c1
c2

)

=









1
0
1
2









(

1 1 1 1
0 1 2 3

)









1 0
1 1
1 2
1 3









(

c1
c2

)

=

(

1 1 1 1
0 1 2 3

)









1
0
1
2









(

4 6
6 14

)(

c1
c2

)

=

(

4
8

)

⇐⇒
{

c1 = 0.4
c2 = 0.4





Problem. Find the quadratic polynomial that is the least
squares fit to the following data

x 0 1 2 3

f (x) 1 0 1 2

f (x) = c1 + c2x + c3x
2

=⇒















c1 = 1
c1 + c2 + c3 = 0
c1 + 2c2 + 4c3 = 1
c1 + 3c2 + 9c3 = 2

=⇒









1 0 0
1 1 1
1 2 4
1 3 9













c1
c2
c3



 =









1
0
1
2













1 1 1 1
0 1 2 3
0 1 4 9













1 0 0
1 1 1
1 2 4
1 3 9













c1
c2
c3



 =





1 1 1 1
0 1 2 3
0 1 4 9













1
0
1
2













4 6 14
6 14 36
14 36 98









c1
c2
c3



 =





4
8
22



 ⇐⇒







c1 = 0.9
c2 = −1.1
c3 = 0.5





Norm

The notion of norm generalizes the notion of length

of a vector in R
n.

Definition. Let V be a vector space. A function
α : V → R is called a norm on V if it has the

following properties:

(i) α(x) ≥ 0, α(x) = 0 only for x = 0 (positivity)

(ii) α(rx) = |r |α(x) for all r ∈ R (homogeneity)
(iii) α(x+ y) ≤ α(x) + α(y) (triangle inequality)

Notation. The norm of a vector x ∈ V is usually

denoted ‖x‖. Different norms on V are
distinguished by subscripts, e.g., ‖x‖1 and ‖x‖2.



Examples. V = R
n, x = (x1, x2, . . . , xn) ∈ R

n.

• ‖x‖∞ = max(|x1|, |x2|, . . . , |xn|).
Positivity and homogeneity are obvious. Let
x = (x1, . . . , xn) and y = (y1, . . . , yn). Then

x+ y = (x1 + y1, . . . , xn + yn).

|xi + yi | ≤ |xi |+ |yi | ≤ maxj |xj |+maxj |yj |
=⇒ maxj |xj + yj | ≤ maxj |xj |+maxj |yj |

=⇒ ‖x+ y‖∞ ≤ ‖x‖∞ + ‖y‖∞.

• ‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|.
Positivity and homogeneity are obvious.
The triangle inequality: |xi + yi | ≤ |xi |+ |yi |

=⇒
∑

j |xj + yj | ≤
∑

j |xj |+
∑

j |yj |



Examples. V = R
n, x = (x1, x2, . . . , xn) ∈ R

n.

• ‖x‖p =
(

|x1|p + |x2|p + · · ·+ |xn|p
)1/p

, p > 0.

Remark. ‖x‖2 = Euclidean length of x.

Theorem ‖x‖p is a norm on R
n for any p ≥ 1.

Positivity and homogeneity are still obvious (and
hold for any p > 0). The triangle inequality for

p ≥ 1 is known as the Minkowski inequality:
(

|x1 + y1|p + |x2 + y2|p + · · ·+ |xn + yn|p
)1/p ≤

≤
(

|x1|p + · · ·+ |xn|p
)1/p

+
(

|y1|p + · · ·+ |yn|p
)1/p

.



Normed vector space

Definition. A normed vector space is a vector
space endowed with a norm.

The norm defines a distance function on the normed

vector space: dist(x, y) = ‖x− y‖.

Then we say that a vector x is a good
approximation of a vector x0 if dist(x, x0) is small.

Also, we say that a sequence x1, x2, . . . converges

to a vector x if dist(x, xn) → 0 as n → ∞.



Unit circle: ‖x‖ = 1

‖x‖ = (x2

1
+ x2

2
)1/2 black

‖x‖ =
(

1

2
x2

1
+ x2

2

)1/2
green

‖x‖ = |x1|+ |x2| blue

‖x‖ = max(|x1|, |x2|) red



Examples. V = C [a, b], f : [a, b] → R.

• ‖f ‖∞ = max
a≤x≤b

|f (x)|.

• ‖f ‖1 =
∫ b

a

|f (x)| dx .

• ‖f ‖p =
(
∫ b

a

|f (x)|p dx
)1/p

, p > 0.

Theorem ‖f ‖p is a norm on C [a, b] for any p ≥ 1.


