MATH 311
 Topics in Applied Mathematics I

Lecture 21:
Review of differential calculus.
Differentiation in normed vector spaces.

Limit of a sequence

Definition. Sequence $x_{1}, x_{2}, x_{3}, \ldots$ of real numbers is said to converge to a real number a if for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{n}-a\right|<\varepsilon$ for all $n \geq N$. The number a is called the limit of $\left\{x_{n}\right\}$.
Notation: $\lim _{n \rightarrow \infty} x_{n}=a$, or $x_{n} \rightarrow a$ as $n \rightarrow \infty$.
Note that $d(x, y)=|x-y|$ is the distance between points x and y on the real line.

The condition $\left|x_{n}-a\right|<\varepsilon$ is equivalent to $x_{n} \in(a-\varepsilon, a+\varepsilon)$. The interval $(a-\varepsilon, a+\varepsilon)$ is called the ε-neighborhood of the point a. The convergence $x_{n} \rightarrow a$ means that any ε-neighborhood of a contains all but finitely many elements of the sequence $\left\{x_{n}\right\}$.

Limit of a function

Suppose $f: E \rightarrow \mathbb{R}$ is a function defined on a set $E \subset \mathbb{R}$.
Definition. We say that the function f converges to a limit $L \in \mathbb{R}$ at a point a if for every $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that

$$
0<|x-a|<\delta \text { implies }|f(x)-L|<\varepsilon .
$$

Notation: $L=\lim _{x \rightarrow a} f(x)$ or $f(x) \rightarrow L$ as $x \rightarrow a$.
Theorem Let / be an open interval containing a point $a \in \mathbb{R}$ and f be a function defined on $I \backslash\{a\}$. Then $f(x) \rightarrow L$ as $x \rightarrow a$ if and only if for any sequence $\left\{x_{n}\right\}$ of elements of $I \backslash\{a\}$,

$$
\lim _{n \rightarrow \infty} x_{n}=a \text { implies } \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L .
$$

Continuity

Definition. Given a set $E \subset \mathbb{R}$, a function $f: E \rightarrow \mathbb{R}$, and a point $c \in E$, the function f is continuous at c if

$$
f(c)=\lim _{x \rightarrow c} f(x) .
$$

That is, if for any $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that $|x-c|<\delta$ and $x \in E$ imply $|f(x)-f(c)|<\varepsilon$.

Theorem A function $f: E \rightarrow \mathbb{R}$ is continuous at a point $c \in E$ if and only if for any sequence $\left\{x_{n}\right\}$ of elements of E, $x_{n} \rightarrow c$ as $n \rightarrow \infty$ implies $f\left(x_{n}\right) \rightarrow f(c)$ as $n \rightarrow \infty$.

We say that the function f is continuous on a set $E_{0} \subset E$ if f is continuous at every point $c \in E_{0}$. The function f is continuous if it is continuous on the entire domain E.

Topology of the real line

Definition. A sequence $\left\{x_{n}\right\}$ of real numbers is called a Cauchy sequence if for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{n}-x_{m}\right|<\varepsilon$ whenever $n, m \geq N$.
Theorem (Cauchy) Any Cauchy sequence is convergent.
This property of \mathbb{R} is called completeness.
Theorem (Bolzano-Weierstrass) Every bounded sequence of real numbers has a convergent subsequence.
This property of \mathbb{R} is called local compactness.
A set $S \subset \mathbb{R}$ is called compact if any sequence of its elements has a subsequence converging to a limit in S. For example, any closed bounded interval $[a, b]$ is compact.
Extreme Value Theorem If $S \subset \mathbb{R}$ is compact, then any continuous function $f: S \rightarrow \mathbb{R}$ attains its extreme values on S.

The derivative

Definition. A real function f is said to be differentiable at a point $a \in \mathbb{R}$ if it is defined on an open interval containing a and the limit

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists. The limit is denoted $f^{\prime}(a)$ and called the derivative of f at a. An equivalent condition is

$$
f(a+h)=f(a)+f^{\prime}(a) h+r(h), \text { where } \lim _{h \rightarrow 0} r(h) / h=0
$$

If a function f is differentiable at a point a, then it is continuous at a.

Suppose that a function f is defined and differentiable on an interval l. Then the derivative of f can be regarded as a function on I. Notation: $f^{\prime}, \dot{f}, \frac{d f}{d x}, D_{x} f, f^{(1)}$.

Differentiability theorems

Sum Rule If functions f and g are differentiable at a point $a \in \mathbb{R}$, then the sum $f+g$ is also differentiable at a. Moreover, $(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)$.

Homogeneous Rule If a function f is differentiable at a point $a \in \mathbb{R}$, then for any $r \in \mathbb{R}$ the scalar multiple $r f$ is also differentiable at a. Moreover, $(r f)^{\prime}(a)=r f^{\prime}(a)$.

Difference Rule If functions f and g are differentiable at a point $a \in \mathbb{R}$, then the difference $f-g$ is also differentiable at a. Moreover, $(f-g)^{\prime}(a)=f^{\prime}(a)-g^{\prime}(a)$.

Differentiability theorems

Product Rule If functions f and g are differentiable at a point $a \in \mathbb{R}$, then the product $f g$ is also differentiable at a. Moreover, $(f g)^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a)$.

Reciprocal Rule If a function f is differentiable at a point $a \in \mathbb{R}$ and $f(a) \neq 0$, then the function $1 / f$ is also differentiable at a. Moreover, $(1 / f)^{\prime}(a)=-f^{\prime}(a) / f^{2}(a)$.

Quotient Rule If functions f and g are differentiable at $a \in \mathbb{R}$ and $g(a) \neq 0$, then the quotient f / g is also differentiable at a. Moreover,

$$
\left(\frac{f}{g}\right)^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{g^{2}(a)} .
$$

Differentiability theorems

Chain Rule If a function f is differentiable at a point $a \in \mathbb{R}$ and a function g is differentiable at $f(a)$, then the composition $g \circ f$ is differentiable at a. Moreover, $(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) \cdot f^{\prime}(a)$.

Derivative of the inverse function Suppose f is an invertible continuous function. If f is differentiable at a point a and $f^{\prime}(a) \neq 0$, then the inverse function is differentiable at the point $b=f(a)$ and, moreover,

$$
\left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}(a)} .
$$

In the case $f^{\prime}(a)=0$, the inverse function f^{-1} is not differentiable at $f(a)$.

Properties of differentiable functions

Fermat's Theorem If a function f is differentiable at a point c of local extremum (maximum or minimum), then $f^{\prime}(c)=0$.

Rolle's Theorem If a function f is continuous on a closed interval $[a, b]$, differentiable on the open interval (a, b), and if $f(a)=f(b)$, then $f^{\prime}(c)=0$ for some $c \in(a, b)$.

Mean Value Theorem If a function f is
continuous on $[a, b]$ and differentiable on (a, b), then there exists $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.

Problem. Find $\min x^{x}$.

The function $f(x)=x^{x}$ is well defined and positive on $(0, \infty)$. Hence

$$
f(x)=e^{\log f(x)}=e^{\log x^{x}}=e^{x \log x}
$$

for all $x>0$. That is, $f(x)=g(h(x))$, where $h(x)=x \log x$ and $g(y)=e^{y}$. Using the Chain Rule and the Product Rule, we obtain

$$
\begin{aligned}
f^{\prime}(x) & =e^{x \log x}(x \log x)^{\prime}=x^{x}\left((x)^{\prime} \log x+x(\log x)^{\prime}\right) \\
& =x^{x}(\log x+1) .
\end{aligned}
$$

It follows that $f^{\prime}(x)<0$ for $0<x<1 / e$ and $f^{\prime}(x)>0$ for $x>1 / e$. Hence the function f is strictly decreasing on $(0,1 / e]$ and strictly increasing on $[1 / e, \infty)$. Therefore

$$
\min _{x>0} f(x)=f(1 / e)=(1 / e)^{1 / e}=e^{-1 / e} .
$$

Convergence in normed vector spaces

Suppose V is a vector space endowed with a norm $\|\cdot\|$. The norm gives rise to a distance function $\operatorname{dist}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$.
Definition. We say that a sequence of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots$ converges to a vector \mathbf{u} in the normed vector space V if $\left\|\mathbf{v}_{k}-\mathbf{u}\right\| \rightarrow 0$ as $k \rightarrow \infty$.

In the case $V=\mathbb{R}^{n}$, a sequence of vectors converges with respect to a norm if and only if it converges in each coordinate. In the case $V=\mathcal{M}_{m, n}(\mathbb{R})$, a sequence of matrices converges with respect to a norm if and only if it converges in each entry.

Similarly, in the case $\operatorname{dim} V<\infty$ we can choose a finite basis $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}$. Any vector $\mathbf{v} \in V$ can be expanded into a linear combination $\mathbf{v}=x_{1} \mathbf{w}_{1}+x_{2} \mathbf{w}_{2}+\cdots+x_{n} \mathbf{w}_{n}$. Then a sequence of vectors converges with respect to a norm if and only if each of the coordinates x_{i} converges.

Vector-valued functions

Suppose V is a vector space endowed with a norm $\|\cdot\|$.
Definition. We say that a function $\mathbf{v}: X \rightarrow V$ defined on a set $X \subset \mathbb{R}$ converges to a limit $\mathbf{u} \in V$ at a point $a \in \mathbb{R}$ if $\|\mathbf{v}(x)-\mathbf{u}\| \rightarrow 0$ as $x \rightarrow a$.

Further, we say that the function \mathbf{v} is continuous at a point $c \in X$ if $\mathbf{v}(c)=\lim _{x \rightarrow c} \mathbf{v}(x)$.

Finally, the function \mathbf{v} is said to be differentiable at a point $a \in \mathbb{R}$ if it is defined on an open interval containing a and the limit

$$
\lim _{h \rightarrow 0} \frac{1}{h}(f(a+h)-f(a))
$$

exists. The limit is denoted $\mathbf{v}^{\prime}(a)$ and called the derivative of v at a.

Differentiability theorems

Sum Rule If functions $\mathbf{v}: X \rightarrow V$ and $\mathbf{w}: X \rightarrow V$ are differentiable at a point $a \in \mathbb{R}$, then the sum $\mathbf{v}+\mathbf{w}$ is also differentiable at a. Moreover, $(\mathbf{v}+\mathbf{w})^{\prime}(a)=\mathbf{v}^{\prime}(a)+\mathbf{w}^{\prime}(a)$.

Homogeneous Rule If a function $\mathbf{v}: X \rightarrow V$ is differentiable at a point $a \in \mathbb{R}$, then for any $r \in \mathbb{R}$ the scalar multiple $r v$ is also differentiable at a. Moreover, $(r \mathbf{v})^{\prime}(a)=r \mathbf{v}^{\prime}(a)$.

Difference Rule If functions $\mathbf{v}: X \rightarrow V$ and $\mathbf{w}: X \rightarrow V$ are differentiable at a point $a \in \mathbb{R}$, then the difference $\mathbf{v}-\mathbf{w}$ is also differentiable at a. Moreover,
$(\mathbf{v}-\mathbf{w})^{\prime}(a)=\mathbf{v}^{\prime}(a)-\mathbf{w}^{\prime}(a)$.

Differentiability theorems

Product Rule \#1 If functions $f: X \rightarrow \mathbb{R}$ and $\mathbf{v}: X \rightarrow V$ are differentiable at a point $a \in \mathbb{R}$, then the scalar multiple $f \mathbf{v}$ is also differentiable at a. Moreover,
$(f \mathbf{v})^{\prime}(a)=f^{\prime}(a) \mathbf{v}(a)+f(a) \mathbf{v}^{\prime}(a)$.
Product Rule \#2 Assume that the norm on V is induced by an inner product $\langle\cdot, \cdot\rangle$. If functions $\mathbf{v}: X \rightarrow V$ and $\mathbf{w}: X \rightarrow V$ are differentiable at a point $a \in \mathbb{R}$, then the inner product $\langle\mathbf{v}, \mathbf{w}\rangle$ is also differentiable at a. Moreover, $(\langle\mathbf{v}, \mathbf{w}\rangle)^{\prime}(a)=\left\langle\mathbf{v}^{\prime}(a), \mathbf{w}(a)\right\rangle+\left\langle\mathbf{v}(a), \mathbf{w}^{\prime}(a)\right\rangle$.

Chain Rule If a function $f: X \rightarrow \mathbb{R}$ is differentiable at a point $a \in \mathbb{R}$ and a function $\mathbf{v}: Y \rightarrow V$ is differentiable at $f(a)$, then the composition $\mathbf{v} \circ f$ is differentiable at a. Moreover, $(\mathbf{v} \circ f)^{\prime}(a)=f^{\prime}(a) \mathbf{v}^{\prime}(f(a))$.

Partial derivative

Consider a function $f: X \rightarrow V$ that is defined in a domain $X \subset \mathbb{R}^{n}$ and takes values in a normed vector space V. The function f depends on n real variables: $f=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Let us select a point $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in X$ and a variable x_{i}. Now we go to the point a and fix all variables except x_{i}. That is, we introduce a function of one variable

$$
\phi(x)=f\left(a_{1}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{n}\right) .
$$

If the function ϕ is differentiable at a_{i}, then the derivative $\phi^{\prime}\left(a_{i}\right)$ is called the partial derivative of f at the point a with respect to the variable x_{i}.
Notation: $\frac{\partial f}{\partial x_{i}}(\mathbf{a}), \frac{\partial}{\partial x_{i}} f(\mathbf{a}),\left(D_{x_{i}} f\right)(\mathbf{a})$.

Directional derivative

Consider a function $f: X \rightarrow V$ that is defined on a subset $X \subset W$ of a vector space W and takes values in a normed vector space V. For every point $\mathbf{a} \in X$ and vector $\mathbf{v} \in W$ we introduce a function of real variable $\phi(t)=f(\mathbf{a}+t \mathbf{v})$. If the function ϕ is differentiable at 0 , then the derivative $\phi^{\prime}(0)$ is called the directional derivative of f at the point a along the vector \mathbf{v}. Notation: $\left(D_{\mathbf{v}} f\right)(\mathbf{a})$.
The partial derivative is a particular case of the directional derivative, when $W=\mathbb{R}^{n}$ and \mathbf{v} is from the standard basis.

Homogeneity $\left(D_{r v} f\right)(\mathbf{a})=r\left(D_{v} f\right)(\mathbf{a})$ for all $r \in \mathbb{R}$ whenever $\left(D_{v} f\right)(\mathbf{a})$ exists.

Linearity Suppose W is a normed vector space, $\left(D_{\mathrm{v}} f\right)(\mathbf{a})$ exists for all \mathbf{v} and depends continuously(?) on \mathbf{a}. Then $\mathbf{v} \mapsto\left(D_{\mathbf{v}} f\right)(\mathbf{a})$ is a linear transformation.

Limit of a function and continuity

Let V and W be normed vector spaces. Suppose $f: E \rightarrow V$ is a function defined on a set $E \subset W$.

Definition. We say that the function f converges to a limit $L \in V$ at a point $\mathbf{w}_{0} \in W$ if for every $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that for all $\mathbf{w} \in E$,

$$
0<\left\|\mathbf{w}-\mathbf{w}_{0}\right\|<\delta \text { implies }\|f(\mathbf{w})-L\|<\varepsilon .
$$

An equivalent condition is that for any sequence $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots$ of vectors from $E, \lim _{n \rightarrow \infty} \mathbf{w}_{n}=\mathbf{w}_{0}$ implies $\lim _{n \rightarrow \infty} f\left(\mathbf{w}_{n}\right)=L$.

Definition. Given a set $E \subset W$, a function $f: E \rightarrow V$, and a point $\mathbf{w}_{0} \in E$, the function f is continuous at \mathbf{w}_{0} if

$$
f\left(\mathbf{w}_{0}\right)=\lim _{\mathbf{w} \rightarrow \mathbf{w}_{0}} f(\mathbf{w}) .
$$

We say that the function f is continuous on a set $E_{0} \subset E$ if f is continuous at every point of E_{0}.

Continuity of a linear transformation

Theorem Suppose V and W are normed vector spaces and $L: W \rightarrow V$ is a linear transformation.
Then the following conditions are equivalent:
(i) L is continuous everywhere on W,
(ii) L is continuous at the zero vector,
(iii) $\|L(\mathbf{w})\| \leq C\|\mathbf{w}\|$ for some $C>0$ and all $\mathbf{w} \in W$.

Example. - If $\operatorname{dim} W<\infty$ then any linear transformation $L: W \rightarrow V$ is continuous.
Otherwise it is not so.

The (Frechét) differential

Suppose V and W are normed vector spaces and consider a function $F: X \rightarrow V$, where $X \subset W$.

Definition. We say that the function F is differentiable at a point $\mathbf{a} \in X$ if it is defined in a neighborhood of a and there exists a continuous linear transformation $L: W \rightarrow V$ such that

$$
F(\mathbf{a}+\mathbf{v})=F(\mathbf{a})+L(\mathbf{v})+R(\mathbf{v}),
$$

where $\|R(\mathbf{v})\| /\|\mathbf{v}\| \rightarrow 0$ as $\|\mathbf{v}\| \rightarrow 0$. The transformation L is called the differential of F at \mathbf{a} and denoted (DF)(a).

Theorem If a function F is differentiable at a point a, then the directional derivatives $\left(D_{\mathrm{v}} F\right)(\mathbf{a})$ exist for all \mathbf{v} and $\left(D_{\mathbf{v}} F\right)(\mathbf{a})=(D F)(\mathbf{a})[\mathbf{v}]$.
Chain Rule If a function F is differentiable at a point a and a function G is differentiable at the point $\mathbf{b}=F(\mathbf{a})$, then $(D(G \circ F))(\mathbf{a})=D G(\mathbf{b}) \circ D F(\mathbf{a})$.

Examples

- Any linear transformation $L: \mathbb{R} \rightarrow \mathbb{R}$ is a scaling $L(x)=r x$ by a scalar r. If L is the differential of a function $f: X \rightarrow \mathbb{R}$ at a point $a \in \mathbb{R}$, then $r=f^{\prime}(a)$.
- Any linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the dot product with a fixed vector, $L(\mathbf{x})=\mathbf{x} \cdot \mathbf{v}_{0}$. If L is the differential of a function $f: X \rightarrow \mathbb{R}$ at a point $\mathbf{a} \in \mathbb{R}^{n}$, then $\mathbf{v}_{0}=\nabla f(\mathbf{a})$.
- Any linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix transformation: $L(\mathbf{x})=B \mathbf{x}$, where $B=\left(b_{i j}\right)$ is an $m \times n$ matrix. If L is the differential of a function $\mathbf{F}: X \rightarrow \mathbb{R}^{m}$ at a point $\mathbf{a} \in \mathbb{R}^{n}$, then $b_{i j}=\frac{\partial F_{i}}{\partial x_{j}}(\mathbf{a})$.
The matrix B of partial derivatives is called the Jacobian matrix of \mathbf{F} and denoted $\frac{\partial\left(F_{1}, \ldots, F_{m}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}$.

Problem. Find the directional derivative of the function $f(x, y)=e^{x+y} \sin (x-y)$ at the point $(0,0)$ along the vector $\mathbf{v}=(2,1)$.

By definition, the directional derivative $D_{v} f(0,0)$ equals the derivative of the function $\phi(t)=f(t \mathbf{v})$ at the point $t=0$. We have $\phi(t)=f(2 t, t)=e^{3 t} \sin t$. Then
$\phi^{\prime}(t)=3 e^{3 t} \sin t+e^{3 t} \cos t=e^{3 t}(3 \sin t+\cos t)$. Finally, $\phi^{\prime}(0)=1$.

Alternatively, we can find the directional derivative by the formula $D_{\mathbf{v}} f(0,0)=\nabla f(0,0) \cdot \mathbf{v}$. We obtain

$$
\begin{aligned}
& \partial f / \partial x=e^{x+y} \sin (x-y)+e^{x+y} \cos (x-y), \\
& \partial f / \partial y=e^{x+y} \sin (x-y)-e^{x+y} \cos (x-y) .
\end{aligned}
$$

Then $\nabla f(0,0)=(1,-1)$. Consequently,
$D_{v} f(0,0)=(1,-1) \cdot(2,1)=1$.

