
MATH 323

Linear Algebra

Lecture 3:
Row echelon form (continued).

Applications of systems of linear equations.
Matrix algebra.



Row echelon form

A matrix is in the row echelon form if the leading entries
(equal to 1) shift to the right as we go from the first row to
the last one.
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• Leading entries are boxed;
• all the entries below the staircase line are zero;
• each step of the staircase has height 1;
• each circle marks a column without a leading entry.



Theorem Any matrix can be converted into row

echelon form by applying elementary row operations.

Sketch of the proof: The proof is by induction on the number
of columns in the matrix. It relies on the next lemma.

Lemma Any matrix can be converted to one of the following
forms using elementary row operations: (i) (1 a12 a13 . . . a1n);

(ii)
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; (v)





0
...
0



.

In the cases (i), (iii) and (v), we already have a row echelon
form. In the cases (ii) and (iv), it is enough to convert the
matrix B to row echelon form. Moreover, the row reduction
on the block B can be simulated by applying elementary row
operations to the entire matrix.



Properties of row echelon form

Let C be a matrix in the row echelon form (resp. reduced row
echelon form). We say that C is a row echelon form (resp.
reduced row echelon form) of a matrix A if C can be
obtained from A by applying elementary row operations.

Theorem 1 For any matrix, the reduced row echelon form
exists and is unique.

Theorem 2 Suppose A and B are matrices of the same
dimensions. Then the following conditions are equivalent:

(i) A and B share a reduced row echelon form;
(ii) A and B share a row echelon form;
(iii) A can be obtained from B by applying elementary row
operations.



Applications of systems of linear equations

Problem 1. Find the point of intersection of the
lines x − y = −2 and 2x + 3y = 6 in R

2.
{

x − y = −2

2x + 3y = 6

Problem 2. Find the point of intersection of the

planes x − y = 2, 2x − y − z = 3, and
x + y + z = 6 in R

3.






x − y = 2
2x − y − z = 3

x + y + z = 6



Method of undetermined coefficients often involves

solving systems of linear equations.

Problem 3. Find a quadratic polynomial p(x)
such that p(1) = 4, p(2) = 3, and p(3) = 4.

Suppose that p(x) = ax2 + bx + c . Then

p(1) = a + b + c , p(2) = 4a + 2b + c ,
p(3) = 9a + 3b + c .







a + b + c = 4

4a+ 2b + c = 3
9a+ 3b + c = 4



Method of undetermined coefficients often involves
solving systems of linear equations.

Problem 3. Find a quadratic polynomial p(x)

such that p(1) = 4, p(2) = 3, and p(3) = 4.

Alternative choice of coefficients: p(x) = ã + b̃x + c̃x2.
Then p(1) = ã + b̃ + c̃ , p(2) = ã + 2b̃ + 4c̃ ,

p(3) = ã + 3b̃ + 9c̃ .







ã + b̃ + c̃ = 4

ã + 2b̃ + 4c̃ = 3

ã + 3b̃ + 9c̃ = 4



Problem 4. Evaluate

∫

0

−1

x(x − 3)

(x − 1)2(x + 2)
dx .

To evaluate the integral, we need to decompose the rational

function R(x) = x(x−3)
(x−1)2(x+2)

into the sum of simple fractions:

R(x) =
a

x − 1
+

b

(x − 1)2
+

c

x + 2

=
a(x − 1)(x + 2) + b(x + 2) + c(x − 1)2

(x − 1)2(x + 2)

=
(a + c)x2 + (a + b − 2c)x + (−2a + 2b + c)

(x − 1)2(x + 2)
.







a + c = 1

a + b − 2c = −3
−2a + 2b + c = 0



Traffic flow

450 400

610 640

520 600

Problem. Determine the amount of traffic
between each of the four intersections.



x1

x2

x3

x4

450 400

610 640

520 600

x1 =?, x2 =?, x3 =?, x4 =?



A B

CD

x1

x2

x3

x4

450 400

610 640

520 600

At each intersection, the incoming traffic has to
match the outgoing traffic.



Intersection A: x4 + 610 = x1 + 450

Intersection B : x1 + 400 = x2 + 640
Intersection C : x2 + 600 = x3
Intersection D: x3 = x4 + 520














x4 + 610 = x1 + 450

x1 + 400 = x2 + 640
x2 + 600 = x3
x3 = x4 + 520

⇐⇒















−x1 + x4 = −160
x1 − x2 = 240

x2 − x3 = −600
x3 − x4 = 520



Electrical network

3 ohms 2 ohms

4 ohms

1 ohm

9 volts

4 volts

Problem. Determine the amount of current in
each branch of the network.



3 ohms 2 ohms

4 ohms

1 ohm

9 volts

4 volts

i1

i2

i3

i1 =?, i2 =?, i3 =?



3 ohms 2 ohms

4 ohms

1 ohm

9 volts

4 volts

i1

i2

i3

Kirchhof’s law #1 (junction rule): at every

node the sum of the incoming currents equals the
sum of the outgoing currents.



3 ohms 2 ohms

4 ohms

1 ohm

9 volts

4 volts

i1

i2

i3

A B

Node A: i1 = i2 + i3
Node B : i2 + i3 = i1



Electrical network

Kirchhof’s law #2 (loop rule): around every

loop the algebraic sum of all voltages is zero.

Ohm’s law: for every resistor the voltage drop E ,
the current i , and the resistance R satisfy E = iR.

Top loop: 9− i2 − 4i1 = 0

Bottom loop: 4− 2i3 + i2 − 3i3 = 0
Big loop: 4− 2i3 − 4i1 + 9− 3i3 = 0

Remark. The 3rd equation is the sum of the first
two equations.









i1 = i2 + i3
9− i2 − 4i1 = 0
4− 2i3 + i2 − 3i3 = 0

⇐⇒







i1 − i2 − i3 = 0
4i1 + i2 = 9

−i2 + 5i3 = 4



Matrices (revisited)

Definition. An m-by-n matrix is a rectangular
array of numbers that has m rows and n columns:
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







a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn











Notation: A = (aij)1≤i≤n, 1≤j≤m or simply A = (aij)
if the dimensions are known.



An n-dimensional vector can be represented as a
1× n matrix (row vector) or as an n × 1 matrix

(column vector):

(x1, x2, . . . , xn)
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An m × n matrix A = (aij) can be regarded as a

column of n-dimensional row vectors or as a row of
m-dimensional column vectors:

A =
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v1
v2
...
vm











, vi = (ai1, ai2, . . . , ain)

A = (w1,w2, . . . ,wn), wj =
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a2j
...

amj
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Vector algebra

Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)
be n-dimensional vectors, and r ∈ R be a scalar.

Vector sum: a+ b = (a1 + b1, a2 + b2, . . . , an + bn)

Scalar multiple: ra = (ra1, ra2, . . . , ran)

Zero vector: 0 = (0, 0, . . . , 0)

Negative of a vector: −b = (−b1,−b2, . . . ,−bn)

Vector difference:

a− b = a+ (−b) = (a1 − b1, a2 − b2, . . . , an − bn)



Given n-dimensional vectors v1, v2, . . . , vk and
scalars r1, r2, . . . , rk , the expression

r1v1 + r2v2 + · · ·+ rkvk

is called a linear combination of vectors
v1, v2, . . . , vk .

Also, vector addition and scalar multiplication are

called linear operations.



Matrix algebra

Definition. Let A = (aij) and B = (bij) be m×n

matrices. The sum A+ B is defined to be the
m×n matrix C = (cij) such that cij = aij + bij
for all indices i , j .

That is, two matrices with the same dimensions can
be added by adding their corresponding entries.




a11 a12
a21 a22
a31 a32



 +





b11 b12
b21 b22
b31 b32



 =





a11 + b11 a12 + b12
a21 + b21 a22 + b22
a31 + b31 a32 + b32







Definition. Given an m×n matrix A = (aij) and a

number r , the scalar multiple rA is defined to be
the m×n matrix D = (dij) such that dij = raij
for all indices i , j .

That is, to multiply a matrix by a scalar r ,
one multiplies each entry of the matrix by r .

r





a11 a12 a13
a21 a22 a23
a31 a32 a33



 =





ra11 ra12 ra13
ra21 ra22 ra23
ra31 ra32 ra33







The m×n zero matrix (all entries are zeros) is
denoted Omn or simply O.

Negative of a matrix: −A is defined as (−1)A.

Matrix difference: A− B is defined as A+ (−B).

As far as the linear operations (addition and scalar
multiplication) are concerned, the m×n matrices

can be regarded as mn-dimensional vectors.



Examples

A =

(

3 2 −1

1 1 1

)

, B =

(

2 0 1

0 1 1

)

,

C =

(

2 0

0 1

)

, D =

(

1 1

0 1

)

.

A+ B =

(

5 2 0
1 2 2

)

, A− B =

(

1 2 −2
1 0 0

)

,

2C =

(

4 0
0 2

)

, 3D =

(

3 3
0 3

)

,

2C + 3D =

(

7 3
0 5

)

, A+ D is not defined.


