MATH 323
Linear Algebra

Lecture 18:
Orthogonal projection.
Least squares problems.



Euclidean structure

In addition to the linear structure (addition and
scaling), space R3 carries the Euclidean structure:

e length of a vector: |x],
e angle between vectors: 6,
e dot product: x -y = |x]||y| coséd.
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Length and distance

Definition. The length of a vector
v=(v,v,...,v,) ER"is

vl = vvi+vit -+

The distance between vectors x and y (or between
points with the same coordinates) is ||y — x||.

Properties of length:

||| >0, ||x]]=0 onlyif x=0 (positivity)
[rx|[ = [r] [|x] (homogeneity)
Ix+yl|l < x| + ||yl (triangle inequality)



Scalar product

Definition. The scalar product of vectors
X = (x5,x0,...,X%,) and y = (y1,¥2, ..., ¥n) IS
XY =X1y1+Xo¥o + -+ Xp¥n.

Properties of scalar product:

x-x>0, x-x=0onlyif x=0 (positivity)
X-y=y-Xx (symmetry)
(x+y) z=x-z+y-z (distributive law)
(rx)-y=r(x-y) (homogeneity)

In particular, x - y is a bilinear function (i.e., it is
both a linear function of x and a linear function of y).



Angle

Cauchy-Schwarz inequality:  |x - y| < ||x]| [|y]l-

By the Cauchy-Schwarz inequality, for any nonzero
vectors x,y € R” we have

cosf = for a unique 0 <6 <.

[ Iyl

0 is called the angle between the vectors x and y.

The vectors x and y are said to be orthogonal
(denoted x L y) if x-y =0 (i.e, if & =90°).



Orthogonality

Definition 1. Vectors x,y € R" are said to be
orthogonal (denoted x | y) if [x-y=0.

Definition 2. A vector x € R” is said to be
orthogonal to a nonempty set Y C R” (denoted
xLY)ifx-y=0 forany ye Y.

Definition 3. Nonempty sets X, Y C R" are said
to be orthogonal (denoted X L Y) if x-y=0
forany x€ X and y e Y.



Orthogonal complement

Definition. Let S C R" be a nonempty set. The
orthogonal complement of S, denoted S+, is the
set of all vectors x € R” that are orthogonal to S.

Theorem 1 (i) St is a subspace of R".
(ii) S* = Span(S)*.

Theorem 2 If V is a subspace of R”, then
(W) (V5 =V,

(i) vn v+t ={0},

(iii) dim V + dim V+ = n.

Theorem 3 If V is the row space of a matrix, then
V+ is the nullspace of the same matrix.






Orthogonal projection

Theorem Let V be a subspace of R". Then any vector
x € R” is uniquely represented as x = p + 0, where p € V
and o € V*.

The component p is called the orthogonal projection of the
vector x onto the subspace V.



Theorem Let V be a subspace of R”. Then any
vector x € R” is uniquely represented as
X=p-+o0, where pc V and o€ V+.

Proof of uniqueness: Suppose x =p-+o0=p +0/,
where p,p’ € V and 0,0 € V1. Then
p—p =0 —o0. Sinccp—p' €V, o —-o0cV
and V NVt = {0}, it follows that
p—p =0 —-0=0. Thus p=p and o’ = 0.



Theorem Let V be a subspace of R”. Then
any vector x € R" is uniquely represented as
Xx=p+o, where pc V and o€ V'

Proof of existence: Let vq,...,v, be a basis for V and
Wi,...,W,, bea basis for V1. We claim that vectors
Vi,...,Vi, Wy, ..., W, are linearly independent. Indeed,

assume that nvy + -+ -+ v + 55wy + - -+ sp,w,, = 0 for
some scalars r;,s;. Then v4+w =0=0-+0, where
V=nVvy+---+nveisin Vand w=sWw; +---+ s,wW,, is
in V1. By uniqueness (already proven!), v =w = 0.

Consequently, n =---=r=0and s;=--- =5, =0.
Notice that kK + m = dim V + dim V+ = n. Therefore linear
independence of vectors vy, ..., Vi, Wy, ..., W, implies that

they form a basis for R”. Now for any vector x € R"” we have
an expansion X = agVi + -+ + qgVg + Siw1 + - - - + BaWp,
=p+ o0, where p=ayvy + -+ a,vi isin V and
0=[1Wi+ -+ BmWp, isin V*.






Let V be a subspace of R”. Suppose p is the
orthogonal projection of a vector x € R” onto V.

Theorem |[x —v|| > |[x —p| forany v#p in V.

Remark. Thus [|x — p|| = mi\g |x — v|| is the
ve

distance from the vector x to the subspace V.

Proof: Let 0 =x — p; then o € V*. Further, let
0, =x—V, and v; = p —v. We have
o,=0-+vy, vi €V, and v; #0. Since o L V,
it follows that o-v; = 0.
H01H2 = 0101 = (0 + Vl) . (0 + Vl)
=0-0+Vi-0+0-V]+V]- -V
=0-0+vi-vi = [of]* + [vi[* > [|o]]*.



Orthogonal projection onto a vector

Let x,y € R”, with y =#£ 0.
Then there exists a unique decomposition x =p+o0
such that p is parallel to y and o is orthogonal to y.

p = orthogonal projection of x onto y



Orthogonal projection onto a vector

Let x,y € R”, with y =#£ 0.
Then there exists a unique decomposition x =p+o0
such that p is parallel to y and o is orthogonal to y.

We have p = ay for some o € R. Then
0O=o0-y=(x—ay)-y=x-y—ay-y.
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Problem. Find the distance from the point
x = (3,1) to the line spanned by y = (2, —1).

Consider the decomposition x = p + 0, where p is parallel to
y while o L y. The required distance is the length of the
orthogonal component o.
X-y 5
P=—Y=<¢ 2a_1 = 2a_1 '
y=i-n=2-1
o=x-p=(31)-(2,-1)=(12), [of =5

Problem. Find the point on the line y = —x that
is closest to the point (3,4).

The required point is the projection p of v = (3,4) on the
vector w = (1, —1) spanning the line y = —x.

V-W -1 11
- — i -1 = (= 2.
P w-wW 2(7 ) ( 2’2)




Problem. Let 1 be the plane spanned by vectors
vi =(1,1,0) and v, =(0,1,1).

(i) Find the orthogonal projection of the vector
x = (4,0, —1) onto the plane .

(ii)) Find the distance from x to I.

We have x = p + 0, where p €11 and o L Il.
Then the orthogonal projection of x onto [l is p and
the distance from x to I is ||o||.

We have p = avi + fv, for some «, 5 € R.

Then o =x—p =x—av; — fBv,.

{o-vle <:>{oz(v1-v1)+5(v2-v1):x-v1

o-v, =0 a(vy - vo) + B(va - vp) = x - vy



x=(4,0,-1), v; =(1,1,0), vo=(0,1,1)

{a(vl-v1)+ﬁ(v2-v1) —x-v

a(vy - Vo) + B(va - vp) = X - vy

— 200+ 3 =4 PN a=23
a+268=-1 b=-2

p=23v;—2v, =(3,1,-2)

o=x—p=(1,-1,1)

ol = V3



Problem. Let [1 be the plane spanned by vectors
vi =(1,1,0) and v, =(0,1,1).

(i) Find the orthogonal projection of the vector
x = (4,0, —1) onto the plane .

(ii)) Find the distance from x to I.

Alternative solution: We have x = p + 0, where p € [l and
o L 1. Then the orthogonal projection of x onto 1 is p and
the distance from x to 1 is ||o]].

Notice that o is the orthogonal projection of x onto the
orthogonal complement M+. In the previous lecture, we found
that M+ is the line spanned by the vector y = (1,—1,1). It

follows that
X-y 3
o=_-Yy—2(1,-1,1)=(1,-1,1).
Yy -1 = (1)
Then p=x—0=(4,0,-1)—(1,-1,1) = (3,1,—-2) and
lofl = V3.



Overdetermined system of linear equations:

X+2y=3 X+2y=3
3x+2y=5 <= (¢ —4y=-4
x+y=2.09 —y =-0.91

No solution: inconsistent system

Assume that a solution (X, yy) does exist but the
system is not quite accurate, namely, there may be
some errors in the right-hand sides.

Problem. Find a good approximation of (xg, yo)-

One approach is the least squares fit. Namely, we
look for a pair (x, y) that minimizes the sum
(x +2y —3)2+ (3x +2y —5)? + (x +y — 2.09).



Least squares solution

System of linear equations:
aiixy + apXxe + -+ ainXxp = b
ax1 Xy + axnXo + -+ anpXp, = b2

<— Ax=Db
AmiX1 + ameXo + -+ -+ @mpXn = bm

For any x € R” define a residual r(x) = b — Ax.

The least squares solution x to the system is the
one that minimizes ||r(x)|| (or, equivalently, ||r(x)|?).

m

Ir(x)|* = Z (ainx1 + aiXo + - - - + ainXn — bi)?
i=1



Let A be an mxn matrix and let b € R™.

Theorem A vector X is a least squares solution of
the system Ax = b if and only if it is a solution of
the associated normal system |ATAx = ATb.

Proof: Ax is an arbitrary vector in R(A), the column space of
A. Hence the length of r(x) =b — Ax is minimal if Ax is the
orthogonal projection of b onto R(A). That is, if r(x) is
orthogonal to R(A).
We know that R(A)* = N(AT), the nullspace of the
transpose matrix. Thus X is a least squares solution if and
only if

ATHR) =0 < AT(b—AR) =0 <= ATAx = ATb.



Problem. Find the least squares solution to

x+2y=3
3x+2y =5
x+y=2.09



