> MATH 323
> Linear Algebra
> Lecture 22:
> Eigenvalues and eigenvectors. Characteristic polynomial.

Eigenvalues and eigenvectors of a matrix

Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an eigenvalue of the matrix A if $A \mathbf{v}=\lambda \mathbf{v}$ for a nonzero column vector $\mathbf{v} \in \mathbb{R}^{n}$. The vector \mathbf{v} is called an eigenvector of A belonging to (or associated with) the eigenvalue λ.

Remarks. - Alternative notation: eigenvalue $=$ characteristic value, eigenvector $=$ characteristic vector.

- The zero vector is never considered an eigenvector.

Example. $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$.

$$
\begin{aligned}
\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)\binom{1}{0} & =\binom{2}{0}=2\binom{1}{0}, \\
\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)\binom{0}{-2} & =\binom{0}{-6}=3\binom{0}{-2} .
\end{aligned}
$$

Hence $(1,0)^{T}$ is an eigenvector of A belonging to the eigenvalue 2 , while $(0,-2)^{T}$ is an eigenvector of A belonging to the eigenvalue 3 .

Example. $\quad A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{1}=\binom{1}{1}, \quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{-1}=\binom{-1}{1}$.
Hence $(1,1)^{T}$ is an eigenvector of A belonging to the eigenvalue 1 , while $(1,-1)^{T}$ is an eigenvector of A belonging to the eigenvalue -1 .
Vectors $\mathbf{v}_{1}=(1,1)$ and $\mathbf{v}_{2}=(1,-1)$ form a basis for \mathbb{R}^{2}. Consider a linear operator $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $L(\mathbf{x})=A \mathbf{x}$. The matrix of L with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ is $B=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$.

Let A be an $n \times n$ matrix. Consider a linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $L(\mathbf{x})=A \mathbf{x}$.
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a nonstandard basis for \mathbb{R}^{n} and B be the matrix of the operator L with respect to this basis.

Theorem The matrix B is diagonal if and only if vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are eigenvectors of A. If this is the case, then the diagonal entries of the matrix B are the corresponding eigenvalues of A.

$$
A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i} \Longleftrightarrow B=\left(\begin{array}{llll}
\lambda_{1} & & & O \\
& \lambda_{2} & & \\
& & \ddots & \\
O & & & \lambda_{n}
\end{array}\right)
$$

Eigenspaces

Let A be an $n \times n$ matrix. Let \mathbf{v} be an eigenvector of A belonging to an eigenvalue λ.
Then $A \mathbf{v}=\lambda \mathbf{v} \Longrightarrow A \mathbf{v}=(\lambda I) \mathbf{v} \Longrightarrow(A-\lambda I) \mathbf{v}=\mathbf{0}$. Hence $\mathbf{v} \in N(A-\lambda I)$, the nullspace of the matrix $A-\lambda I$.

Conversely, if $\mathbf{x} \in N(A-\lambda I)$ then $A \mathbf{x}=\lambda \mathbf{x}$. Thus the eigenvectors of A belonging to the eigenvalue λ are nonzero vectors from $N(A-\lambda I)$. Definition. If $N(A-\lambda I) \neq\{\mathbf{0}\}$ then it is called the eigenspace of the matrix A corresponding to the eigenvalue λ.

How to find eigenvalues and eigenvectors?

Theorem Given a square matrix A and a scalar λ, the following statements are equivalent:

- λ is an eigenvalue of A,
- $N(A-\lambda I) \neq\{\mathbf{0}\}$,
- the matrix $A-\lambda /$ is singular,
- $\operatorname{det}(A-\lambda I)=0$.

Definition. $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of the matrix A.

Eigenvalues λ of A are roots of the characteristic equation. Associated eigenvectors of A are nonzero solutions of the equation $(A-\lambda I) \mathbf{x}=\mathbf{0}$.

Example. $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

$$
\begin{aligned}
& \operatorname{det}(A-\lambda /)=\left|\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right| \\
& =(a-\lambda)(d-\lambda)-b c \\
& =\lambda^{2}-(a+d) \lambda+(a d-b c)
\end{aligned}
$$

Example. $A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$.

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
a_{21} & a_{22}-\lambda & a_{23} \\
a_{31} & a_{32} & a_{33}-\lambda
\end{array}\right| \\
=-\lambda^{3}+c_{1} \lambda^{2}-c_{2} \lambda+c_{3},
\end{gathered}
$$

where $c_{1}=a_{11}+a_{22}+a_{33}$ (the trace of A),
$c_{2}=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|+\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{31} & a_{33}\end{array}\right|+\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|$,
$c_{3}=\operatorname{det} A$.

Theorem. Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix. Then $\operatorname{det}(A-\lambda I)$ is a polynomial of λ of degree n : $\operatorname{det}(A-\lambda I)=(-1)^{n} \lambda^{n}+c_{1} \lambda^{n-1}+\cdots+c_{n-1} \lambda+c_{n}$.

Furthermore, $(-1)^{n-1} c_{1}=a_{11}+a_{22}+\cdots+a_{n n}$ and $c_{n}=\operatorname{det} A$.

Definition. The polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$ is called the characteristic polynomial of the matrix A.

Corollary Any $n \times n$ matrix has at most n eigenvalues.

Example. $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.
Characteristic equation: $\quad\left|\begin{array}{cc}2-\lambda & 1 \\ 1 & 2-\lambda\end{array}\right|=0$.
$(2-\lambda)^{2}-1=0 \quad \Longrightarrow \quad \lambda_{1}=1, \quad \lambda_{2}=3$.

$$
\begin{aligned}
& (A-I) \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y}=\binom{0}{0} \\
& \Longleftrightarrow\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\binom{x}{y}=\binom{0}{0} \Longleftrightarrow x+y=0
\end{aligned}
$$

The general solution is $(-t, t)=t(-1,1), t \in \mathbb{R}$.
Thus $\mathbf{v}_{1}=(-1,1)$ is an eigenvector associated with the eigenvalue 1 . The corresponding eigenspace is the line spanned by \mathbf{v}_{1}.

$$
\begin{aligned}
& (A-3 /) \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{x}{y}=\binom{0}{0} \\
& \Longleftrightarrow\left(\begin{array}{rr}
1 & -1 \\
0 & 0
\end{array}\right)\binom{x}{y}=\binom{0}{0} \Longleftrightarrow x-y=0
\end{aligned}
$$

The general solution is $(t, t)=t(1,1), \quad t \in \mathbb{R}$.
Thus $\mathbf{v}_{2}=(1,1)$ is an eigenvector associated with the eigenvalue 3. The corresponding eigenspace is the line spanned by \mathbf{v}_{2}.

Summary. $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 1 and 3 .
- The eigenspace of A associated with the eigenvalue 1 is the line $t(-1,1)$.
- The eigenspace of A associated with the eigenvalue 3 is the line $t(1,1)$.
- Eigenvectors $\mathbf{v}_{1}=(-1,1)$ and $\mathbf{v}_{2}=(1,1)$ of the matrix A form an orthogonal basis for \mathbb{R}^{2}.
- Geometrically, the mapping $\mathbf{x} \mapsto A \mathbf{x}$ is a stretch by a factor of 3 away from the line $x+y=0$ in the orthogonal direction.

Example. $A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.
Characteristic equation:

$$
\left|\begin{array}{ccc}
1-\lambda & 1 & -1 \\
1 & 1-\lambda & 1 \\
0 & 0 & 2-\lambda
\end{array}\right|=0
$$

Expand the determinant by the 3rd row:

$$
(2-\lambda)\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|=0
$$

$\left((1-\lambda)^{2}-1\right)(2-\lambda)=0 \Longleftrightarrow-\lambda(2-\lambda)^{2}=0$
$\Longrightarrow \lambda_{1}=0, \quad \lambda_{2}=2$.

$$
A \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Convert the matrix to reduced row echelon form:

$$
\begin{gathered}
\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & 1 \\
0 & 0 & 2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & 0 & 2 \\
0 & 0 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
A \mathbf{x}=\mathbf{0} \Longleftrightarrow\left\{\begin{array}{l}
x+y=0, \\
z=0 .
\end{array}\right.
\end{gathered}
$$

The general solution is $(-t, t, 0)=t(-1,1,0)$, $t \in \mathbb{R}$. Thus $\mathbf{v}_{1}=(-1,1,0)$ is an eigenvector associated with the eigenvalue 0 . The corresponding eigenspace is the line spanned by \mathbf{v}_{1}.
$(A-2 I) \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{rrr}-1 & 1 & -1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
$\Longleftrightarrow\left(\begin{array}{rrr}1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \Longleftrightarrow x-y+z=0$.
The general solution is $x=t-s, \quad y=t, \quad z=s$, where $t, s \in \mathbb{R}$. Equivalently,

$$
\mathbf{x}=(t-s, t, s)=t(1,1,0)+s(-1,0,1)
$$

Thus $\mathbf{v}_{2}=(1,1,0)$ and $\mathbf{v}_{3}=(-1,0,1)$ are eigenvectors associated with the eigenvalue 2.
The corresponding eigenspace is the plane spanned by \mathbf{v}_{2} and \mathbf{v}_{3}.

Summary. $\quad A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 0 and 2 .
- The eigenvalue 0 is simple: the corresponding eigenspace is a line.
- The eigenvalue 2 is of multiplicity 2 : the corresponding eigenspace is a plane.
- Eigenvectors $\mathbf{v}_{1}=(-1,1,0), \mathbf{v}_{2}=(1,1,0)$, and $\mathbf{v}_{3}=(-1,0,1)$ of the matrix A form a basis for \mathbb{R}^{3}.
- Geometrically, the map $\mathbf{x} \mapsto A \mathbf{x}$ is the projection on the plane $\operatorname{Span}\left(\mathbf{v}_{2}, \mathbf{v}_{3}\right)$ along the lines parallel to \mathbf{v}_{1} with the subsequent scaling by a factor of 2 .

Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and $L: V \rightarrow V$ be a linear operator. A number λ is called an eigenvalue of the operator L if $L(\mathbf{v})=\lambda \mathbf{v}$ for a nonzero vector $\mathbf{v} \in V$. The vector \mathbf{v} is called an eigenvector of L associated with the eigenvalue λ.
(If V is a functional space then eigenvectors are also called eigenfunctions.)

If $V=\mathbb{R}^{n}$ then the linear operator L is given by $L(\mathbf{x})=A \mathbf{x}$, where A is an $n \times n$ matrix.
In this case, eigenvalues and eigenvectors of the operator L are precisely eigenvalues and eigenvectors of the matrix A.

Suppose $L: V \rightarrow V$ is a linear operator on a finite-dimensional vector space V.
Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be a basis for V and $g: V \rightarrow \mathbb{R}^{n}$ be the corresponding coordinate mapping. Let A be the matrix of L with respect to this basis. Then

$$
L(\mathbf{v})=\lambda \mathbf{v} \Longleftrightarrow A g(\mathbf{v})=\lambda g(\mathbf{v})
$$

Hence the eigenvalues of L coincide with those of the matrix A. Moreover, the associated eigenvectors of A are coordinates of the eigenvectors of L.

Definition. The characteristic polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$ of the matrix A is called the characteristic polynomial of the operator L.
Then eigenvalues of L are roots of its characteristic polynomial.

Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.

Proof: Let B be the matrix of L with respect to a different basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$. Then $A=U B U^{-1}$, where U is the transition matrix from the basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ to $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$. We have to show that $\operatorname{det}(A-\lambda I)=\operatorname{det}(B-\lambda I)$ for all $\lambda \in \mathbb{R}$. We obtain

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(U B U^{-1}-\lambda I\right)
$$

$$
=\operatorname{det}\left(U B U^{-1}-U(\lambda I) U^{-1}\right)=\operatorname{det}\left(U(B-\lambda I) U^{-1}\right)
$$

$$
=\operatorname{det}(U) \operatorname{det}(B-\lambda I) \operatorname{det}\left(U^{-1}\right)=\operatorname{det}(B-\lambda I)
$$

Eigenspaces

Let $L: V \rightarrow V$ be a linear operator.
For any $\lambda \in \mathbb{R}$, let V_{λ} denotes the set of all solutions of the equation $L(\mathbf{x})=\lambda \mathbf{x}$.
Then V_{λ} is a subspace of V since V_{λ} is the kernel of a linear operator given by $\mathbf{x} \mapsto L(\mathbf{x})-\lambda \mathbf{x}$.
V_{λ} minus the zero vector is the set of all eigenvectors of L associated with the eigenvalue λ. In particular, $\lambda \in \mathbb{R}$ is an eigenvalue of L if and only if $V_{\lambda} \neq\{\mathbf{0}\}$.
If $V_{\lambda} \neq\{0\}$ then it is called the eigenspace of L corresponding to the eigenvalue λ.

Example. $\quad V=C^{\infty}(\mathbb{R}), D: V \rightarrow V, D f=f^{\prime}$.
A function $f \in C^{\infty}(\mathbb{R})$ is an eigenfunction of the operator D belonging to an eigenvalue λ if $f^{\prime}(x)=\lambda f(x)$ for all $x \in \mathbb{R}$.
It follows that $f(x)=c e^{\lambda x}$, where c is a nonzero constant.

Thus each $\lambda \in \mathbb{R}$ is an eigenvalue of D.
The corresponding eigenspace is spanned by $e^{\lambda x}$.

Theorem If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Proof: The proof is by induction on k. The case $k=1$ is trivial. Now assume $k>1$ and the theorem holds for $k-1$ vectors. Suppose that $t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{k} \mathbf{v}_{k}=\mathbf{0}$ for some $t_{i} \in \mathbb{R}$. We have to show that $t_{i}=0,1 \leq i \leq k$.

$$
\begin{gathered}
L\left(t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{k} \mathbf{v}_{k}\right)=L(\mathbf{0}), \\
t_{1} L\left(\mathbf{v}_{1}\right)+t_{2} L\left(\mathbf{v}_{2}\right)+\cdots+t_{k} L\left(\mathbf{v}_{k}\right)=\mathbf{0}, \\
t_{1} \lambda_{1} \mathbf{v}_{1}+t_{2} \lambda_{2} \mathbf{v}_{2}+\cdots+t_{k} \lambda_{k} \mathbf{v}_{k}=\mathbf{0}
\end{gathered}
$$

It follows that

$$
\begin{gathered}
t_{1} \lambda_{1} \mathbf{v}_{1}+t_{2} \lambda_{2} \mathbf{v}_{2}+\cdots+t_{k} \lambda_{k} \mathbf{v}_{k}-\lambda_{1}\left(t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{k} \mathbf{v}_{k}\right)=\mathbf{0} \\
\Longrightarrow t_{2}\left(\lambda_{2}-\lambda_{1}\right) \mathbf{v}_{2}+\cdots+t_{k}\left(\lambda_{k}-\lambda_{1}\right) \mathbf{v}_{k}=\mathbf{0} .
\end{gathered}
$$

By the inductive assumption, vectors $\mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent. Hence $t_{2}\left(\lambda_{2}-\lambda_{1}\right)=\cdots=t_{k}\left(\lambda_{k}-\lambda_{1}\right)=0$ $\Longrightarrow t_{2}=\cdots=t_{k}=0$. Then $t_{1} \mathbf{v}_{1}=\mathbf{0}$ so that $t_{1}=0$ too.

Corollary 1 If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct real numbers, then the functions $e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{k} x}$ are linearly independent.
Proof: Consider a linear operator $D: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ given by $D f=f^{\prime}$. Then $e^{\lambda_{1} x}, \ldots, e^{\lambda_{k} x}$ are eigenfunctions of D associated with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. By the theorem, the eigenfunctions are linearly independent.

Corollary 2 If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are eigenvectors of a matrix A associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Corollary 3 Let A be an $n \times n$ matrix such that the characteristic equation $\operatorname{det}(A-\lambda I)=0$ has n distinct real roots. Then \mathbb{R}^{n} has a basis consisting of eigenvectors of A.
Proof: Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be eigenvectors of the matrix A belonging to n distinct real roots of its characteristic equation. By Corollary 2, these vectors are linearly independent. Therefore they form a basis for \mathbb{R}^{n}.

