MATH 323
Linear Algebra

Lecture 23:
Diagonalization.

Review for Test 2.



Basis of eigenvectors

Let V be a finite-dimensional vector space and
L:V — V be a linear operator. Let vq,vy, ..., v,
be a basis for V and A be the matrix of the
operator L with respect to this basis.

Theorem The matrix A is diagonal if and only if
vectors vi, Vo, ...,V, are eigenvectors of L.

If this is the case, then the diagonal entries of the
matrix A are the corresponding eigenvalues of L.

A1 0]

L(V,‘) = )\,’V,‘ — A= A2

0] An



How to find a basis of eigenvectors

Theorem If vy, v,, ..., v, are eigenvectors of a linear
operator L associated with distinct eigenvalues A1, Ao, ..., A,
then vy, vy, ... v, are linearly independent.

Corollary 1 Suppose Ai, Ao, ..., A are all eigenvalues of a

linear operator L:V — V. Forany 1</ <k, letS; bea
basis for the eigenspace associated to the eigenvalue ;. Then
these bases are disjoint and the union S =5 US U---U S,
is a linearly independent set.

Moreover, if the vector space V' admits a basis consisting of
eigenvectors of L, then S is such a basis.

Corollary 2 Let A be an nxn matrix such that the
characteristic equation det(A — A/) = 0 has n distinct roots.
Then (i) there is a basis for R" consisting of eigenvectors of A;
(i) all eigenspaces of A are one-dimensional.



Diagonalization

Theorem 1 Let L be a linear operator on a finite-dimensional
vector space V. Then the following conditions are equivalent:

e the matrix of L with respect to some basis is diagonal;
e there exists a basis for V' formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these
conditions.

Theorem 2 Let A be an nxn matrix. Then the following
conditions are equivalent:

e A is the matrix of a diagonalizable operator;

e A s similar to a diagonal matrix, i.e., it is represented as
A = UBU7!, where the matrix B is diagonal;

e there exists a basis for R” formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.



2 1
Example. A = <1 2).

e The matrix A has two eigenvalues: 1 and 3.
e The eigenspace of A associated with the
eigenvalue 1 is the line spanned by v; = (—1,1).
e The eigenspace of A associated with the
eigenvalue 3 is the line spanned by v, = (1,1).
e Eigenvectors v; and v, form a basis for R?.

Thus the matrix A is diagonalizable. Namely,
A = UBU™!, where

(9 (1)

Notice that U is the transition matrix from the basis vi, v, to
the standard basis.



11 -1
Example. A=11 1 1

00 2
e The matrix A has two eigenvalues: 0 and 2.
e The eigenspace for 0 is one-dimensional; it has a basis
Sy = {v1}, where v; =(—1,1,0).
e The eigenspace for 2 is two-dimensional; it has a basis
Sy = {va,v3}, where v, =(1,1,0), v3 = (—1,0,1).

e The union S; U S, = {vy1,vy,v3} is a linearly independent
set, hence it is a basis for R3.

Thus the matrix A is diagonalizable. Namely, A= UBU™!,
where

000 -1 1 -1
B=1020 U= 11 0
0 0 2 00 1



To diagonalize an nxn matrix A is to find a diagonal matrix B
and an invertible matrix U such that A= UBU™.

Suppose there exists a basis vy,...,v, for R” consisting of
eigenvectors of A. That is, Avy, = Axvi, where A\, € R.

Then A= UBU™!, where B = diag()\1,\2,...,A,) and U is
a transition matrix whose columns are vectors vi,Vvs,...,V,.

4 3

Example. A= (0 1

). det(A— M) = (4— \)(1—\).

Eigenvalues: A\ =4, \, = 1.

. . 1 -1
Associated eigenvectors: v; = (0> Vo = ( 1).

Thus A= UBU™1, where

(1) 06 )



Suppose we have a problem that involves a square
matrix A in the context of matrix multiplication.

Also, suppose that the case when A is a diagonal
matrix is simple. Then the diagonalization may
help in solving this problem (or may not). Namely,
it may reduce the case of a diagonalizable matrix to
that of a diagonal one.

An example of such a problem is, given a square
matrix A, to find its power Ak
51 0] S]l_( @)
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4 3

Problem. Let A= (O 1

). Find A°.

We know that A = UBU™!, where

-(59) v-()

Then A® = UBU-'UBU-'UBU'UBU-'UBU™?

1 -1\ /1024 0\ (1 1
_ |JB5()-1 —
—uero=(5 ) (5% 1) (0 1)
(1024 -1\ (1 1\ (1024 1023
N 0 1/\0 1) 0 1 /)



4 3

Problem. Let A= <O 1

). Find A% (k > 1).

We know that A = UBU™!, where

4 0 1 —1
B_<O 1>' U_<O 1)'
Then

1 -1\ /4 0\ /11
k _ kp1—1 _
w=vso= (o) (5 9) (01)
Ak -1\ (1 1\ (4K 4k
~\o 1J\o1) \o 1 )



Problem. Let A= <
such that C2 = A.

4 3 . .
0 1). Find a matrix C

We know that A = UBU~!, where

(8 o= Y)

Suppose that D? = B for some matrix D. Let C = UDU™!.
Then C? = UDU~'UDU! = UD?U~! = UBU™! = A.

(V4 0\ (20
WecantakeD—(0 vi) = \o 1)

e DEGY-GY



There are two obstructions to existence of a basis
consisting of eigenvectors. They are illustrated by
the following examples.

11
Example 1. A= <O 1).
det(A— M) = (A —1)%2. Hence A\ =1 is the only
eigenvalue. The associated eigenspace is the line
t(1,0).
0 -1
Example 2. A= <1 0).
det(A— M) = N2+ 1.
—> no real eigenvalues or eigenvectors

(However there are complex eigenvalues/eigenvectors.)



Topics for Test 2

Coordinates and linear transformations (Leon 3.5, 4.1-4.3)
e Coordinates relative to a basis

Change of basis, transition matrix

Matrix transformations

Matrix of a linear transformation

Similarity of matrices

Orthogonality (Leon 5.1-5.6)

e Inner products and norms

e Orthogonal complement, orthogonal projection
e Least squares problems

e The Gram-Schmidt orthogonalization process

Eigenvalues and eigenvectors (Leon 6.1, 6.3)
e Eigenvalues, eigenvectors, eigenspaces

e Characteristic polynomial

e Diagonalization



Proofs to know

Theorem 1 Any linear mapping L : R™ — R" is a matrix
transformation.

Theorem 2 The orthogonal complement of the row space of
a matrix A is the nullspace of A.

Theorem 3 If nonzero vectors in an inner product space are
orthogonal to each other, then they are linearly independent.

Theorem 4 )\ € R is an eigenvalue of a matrix A if and only
if det(A—\)=0.

Theorem 5 Similar matrices have the same characteristic
polynomial.

Theorem 6 If vi,v,, ... v, are eigenvectors of the same
linear operator L associated with distinct eigenvalues
A1, A2y .oy Ak, then vy, vo, ... v, are linearly independent.



Sample problems for Test 2

Problem 1 (15 pts.) Let M, ,(RR) denote the vector space
of 2 x 2 matrices with real entries. Consider a linear operator
L: Mzg(R) — M272(R) given by

Ea)=Gu)GE)

Find the matrix of the operator L with respect to the basis

1 0 01 0 0 0 0
i-(o0)-2-(50) 8-(10) &= (0 1)



Problem 2 (20 pts.) Find a linear polynomial which is the
best least squares fit to the following data:

x| -2|-1]o[1]2
OIEIEINHE

Problem 3 (25 pts.) Let V be a subspace of R* spanned
by the vectors x; = (1,1,1,1) and x, = (1,0, 3,0).
(i) Find an orthonormal basis for V.

(ii) Find an orthonormal basis for the orthogonal complement
v+



Problem 4 (30 pts.) Let A=

[ R Sy
N =N
== o

(i) Find all eigenvalues of the matrix A.

(ii) For each eigenvalue of A, find an associated eigenvector.
(iii) Is the matrix A diagonalizable? Explain.

(iv) Find all eigenvalues of the matrix A2.

Bonus Problem 5 (15 pts.) Let L:V — W be a linear
mapping of a finite-dimensional vector space V to a vector
space W. Show that

dim Range(L) 4+ dimker(L) = dim V.



Problem 1. Let M;(R) denote the vector space of 2x2
matrices with real entries. Consider a linear operator
L: Mjyo(R) — Msyo(R) given by

zu)=Gu)GE)

Find the matrix of the operator L with respect to the basis
10 01 00 0 0
a-(00) &= (00) 5-(10) &= (0 1)

Let M, denote the desired matrix.

By definition, M, is a 4x4 matrix whose columns are
coordinates of the matrices L(E;), L(Ez), L(E3), L(Ey)
with respect to the basis Ej, B>, E3, E4.
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12\ (3 4\ _
34)-\00)"
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12\ [0 0\
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00 00
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It follows that

OO mMm<
O O —+H AN
N < OO

— AN O O



Thus the relation

Ee)-CunG:)

is equivalent to the relation

X1 1 300 X
4] N 0013 V4
wy 00 2 4 w



Problem 2. Find a linear polynomial which is the best least
squares fit to the following data:

[0]1]2
[1[2]5

We are looking for a function f(x) = ¢ + cx, where ¢, &
are unknown coefficients. The data of the problem give rise
to an overdetermined system of linear equations in variables ¢;
and ¢:

X 1

| =2| -
O] =3[ -2

(o] —2C2 = —3,
G — 6 = —2,
Cl—].,
C+ G = 2,
C1—|—2C2 =b.

This system is inconsistent.



We can represent the system as a matrix equation Ac =y,
where

1 -2 -3
1 -1 )
A=|1 o], c_(cl), y=| 1
11 c2 2
1 2 5

The least squares solution ¢ of the above system is a solution
of the normal system AT Ac = ATy:

1 -2 -3
(1 1111)1_(1)<c1)<1 1111)_5
2 -1012)f; [|\a -2 -1 0 1 2 5
1 2 5

= (n)E)- (o) = (82

Thus the function f(x) = % + 2x is the best least squares fit
to the above data among linear polynomials.






Problem 3. Let V be a subspace of R* spanned by the
vectors x; = (1,1,1,1) and x, = (1,0,3,0).
(i) Find an orthonormal basis for V.

First we apply the Gram-Schmidt orthogonalization process to
vectors Xi, X, and obtain an orthogonal basis vy, v, for the
subspace V:

Vi = X1 = (]., ]., ]., 1),

Xo> - V71
Vo = Xo—

4
vi=(1,0,3,0)-5(L,1,1,1) = (0,~1,2,-1).

Vi -V

Then we normalize vectors vq, v, to obtain an orthonormal
basis wy, w, for V:

il =2 = wi =i =3(1,1,1,1)




Problem 3. Let V be a subspace of R* spanned by the
vectors x; = (1,1,1,1) and x, = (1,0,3,0).

(ii) Find an orthonormal basis for the orthogonal complement
v+

Since the subspace V is spanned by vectors (1,1,1,1) and
(1,0,3,0), it is the row space of the matrix

1111
A= (1 0 3 0) ’
Then the orthogonal complement V* is the nullspace of A.

To find the nullspace, we convert the matrix A to reduced row
echelon form:

1111_>1030_>10 30
1030 1111 01 -2 1)°



Hence a vector (xi,xo, X3, x3) € R* belongs to V* if and only
if

X1

10 30 x| (0
01 -2 1 x3 | \0O
Xa
x1+3x3=0 x1 = —3x3
{x2—2x3—|—x4:0 — {x2:2x3—x4

The general solution of the system is (x, X2, X3, X3) =
= (—3t,2t — s, t,s) = t(—3,2,1,0) + s(0,—1,0,1), where
t,s e R.

It follows that V* is spanned by vectors x3 = (0, —1,0,1)
and x4 = (-3,2,1,0).



The vectors x3 = (0,—1,0,1) and x4 =(—3,2,1,0) form a

basis for the subspace V.
It remains to orthogonalize and normalize this basis:

V3 = X3 = (0, —].,0, ].),

X4 * V3 —2
= Xq — =(-3,2,1,0) — —(0,-1,0,1
Vy X4 Vs - Vs ( 777) 2(7 77)
=(-3,1,1,1),

HV3” = \/§ = W3 = ‘V3” = T(O 1 0 1)

HV4|| = \/E = 2\/§ = W4 = ::” = 2—\1/§(_37 ]-7 17 ]-)

Thus the vectors ws = %(O, —1,0,1) and
wy = 2—\1/§(—3, 1,1,1) form an orthonormal basis for V+.



1 20
Problem 4. LetA=1[1 1 1
0 21

(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation
det(A — Al) = 0. We obtain that

1-X 2 0

det(A—A)=| 1 1-x 1
0 21—\

=(1=X°=21-X)—-201-XN)=(1-XN)(1-1)?>-4)
=(1-N(1-N=-2)((1=X)+2)=-A=1)A+1)(A—3).

Hence the matrix A has three eigenvalues: —1, 1, and 3.



Problem 4. Let A=

O
N =N
== o

(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector v = (x,y, z) of the matrix A associated with
an eigenvalue X is a nonzero solution of the vector equation

1-X 2 0 X 0
(A-Av=0 1 1-x 1 y|l=10
0 2 1-A z 0

To solve the equation, we convert the matrix A — Al to
reduced row echelon form.



First consider the case A\ = —1. The row reduction yields

2 20 110

A+l=112 1] =1 21

0 2 2 0 2 2
110 110 1 0 -1
1011} —=1011] —=(01 1
0 2 2 00O 00 0

Hence
x—z=0,
A+llv=0 — {y+z:0.

The general solution is x =t, y = —t, z=1t, where t € R.
In particular, v; = (1,—1,1) is an eigenvector of A associated

with the eigenvalue —1.



Secondly, consider the case A = 1. The row reduction yields

0 20 1 01 1 01 1 01
A-I=1 0 1] —=]10 2 0] =10 10| —=(0 1 0].
0 20 0 20 0 20 0 00

Hence

- x+z=0,
A-Illv=0 = {yzo‘
The general solution is x = —t, y =0, z=1t, where t € R.

In particular, v, = (—1,0,1) is an eigenvector of A associated
with the eigenvalue 1.



Finally, consider the case A = 3. The row reduction yields

-2 2 0 1 -1 0 1 -1
A-3] = 1 -2 1] =11 -2 1] —=(0 -1
0 2 =2 0 2 =2 0 2
1 -1 0 1 -1 0 1 0 -1
— 10 1 -1] — 10 1 -1] —10 1 -1
0 2 =2 0 0 0 00 0
Hence
x—z=0,
(A-3llv=0 — {y—z:O.

The general solutionis x =t, y =t, z=1t, where t € R.
In particular, v3 = (1,1,1) is an eigenvector of A associated
with the eigenvalue 3.

0
1
-2



Problem 4. Let A=

O =
N =N
== o

(iii) Is the matrix A diagonalizable? Explain.

The matrix A is diagonalizable, i.e., there exists a basis for R3
formed by its eigenvectors.

Namely, the vectors v; = (1,—-1,1), v = (—1,0,1), and

vz = (1,1,1) are eigenvectors of the matrix A belonging to
distinct eigenvalues. Therefore these vectors are linearly
independent. It follows that vy, v,,vs3 is a basis for R3.

Alternatively, the existence of a basis for R® consisting of
eigenvectors of A already follows from the fact that the matrix
A has three distinct eigenvalues.



Problem 4. Let A=

O =
N =N
== O

(iv) Find all eigenvalues of the matrix A2.

Suppose that v is an eigenvector of the matrix A associated
with an eigenvalue A, thatis, v # 0 and Av = Av. Then

A%v = A(Av) = A(Av) = A(Av) = A\(A\v) = Nv.

Therefore v is also an eigenvector of the matrix A? and the
associated eigenvalue is \2. We already know that the matrix
A has eigenvalues —1, 1, and 3. It follows that A? has
eigenvalues 1 and 9.

Since a 3x3 matrix can have up to 3 eigenvalues, we need an
additional argument to show that 1 and 9 are the only
eigenvalues of A%2. One reason is that the eigenvalue 1 has
multiplicity 2.



Bonus Problem 5. Let L:V — W be a linear mapping of
a finite-dimensional vector space V to a vector space W'.
Show that dim Range(L) + dimker(L) = dim V.

The kernel ker(L) is a subspace of V. It is finite-dimensional
since the vector space V is.

Take a basis vy, Vo, ..., v, for the subspace ker(L), then
extend it to a basis vi,Vo,..., Vi, Uy, Uy, ..., U, for the entire
space V.

Claim Vectors L(uy), L(uy),...,L(uy,) form a basis for the
range of L.

Assuming the claim is proved, we obtain
dimRange(L) = m, dimker(L) =k, dimV =k+ m.



Claim Vectors L(u;), L(uy),...,L(u,) form a basis for the
range of L.

Proof (spanning): Any vector w € Range(L) is represented
as w = L(v), where ve V. Then

V = Vi + QoVp + - -+ + Vi + Brug + Boo + -+ - + By,
for some «;, B; € R. It follows that
w = L(v) =aiL(vi)+---Faxl(vi)+FiL(ur)+- - -+ Bml(unm)
= Gil(uy) + -+ -+ Bml(uny).

Note that L(v;) = 0 since v; € ker(L).
Thus Range(L) is spanned by the vectors L(uy), ..., L(upn).



Claim Vectors L(uy), L(uy),...,L(uy,) form a basis for the
range of L.

Proof (linear independence): Suppose that
tlL(Ul) + tzL(UQ) + -4 tmL(Um) =0
for some t; € R. Let u= tju; + tbuy + - -+ + t,u,,. Since
L(u) = t;L(uy) + toL(u2) + - - - + tL(uy,) =0,

the vector u belongs to the kernel of L. Therefore
U= 5Vi + SVp + - - + sV, for some s; € R. It follows that

tiup+buy+- -+t — SV —SHVo— - - — S5 Vi = UuU—U = 0
Linear independence of vectors vi,...,Vv, ug,...,u, implies
that t; =---=1t, =0 (aswell as sy =--- =5, =0).

Thus the vectors L(uy), L(uz), ..., L(us,) are linearly

independent.



