MATH 323
Linear Algebra

Lecture 26:
Orthogonal polynomials.
Review for the final exam.



Orthogonal polynomials

P: the vector space of all polynomials with real
coefficients: p(x) = ap + a;x + aox? + - - + a,x".

Basis for P: 1,x,x%,...,x", ...

Suppose that P is endowed with an inner product.

Definition. Orthogonal polynomials (relative to
the inner product) are polynomials po, p1, p2, - - -
such that deg p, = n (po is a nonzero constant)

and (pn, pm) =0 for n# m.



Orthogonal polynomials can be obtained by applying
the Gram-Schmidt orthogonalization process

to the basis 1,x,x2,...:
po(x) =1,

=X — X, po) X
pl(X) — <P0,Po>p0( ),

— 2 _ <X27P0> X) — <X2,P1> X
Plx) = <po,po>p0( ) (p1, p1) ()

n_ <Xn7 P0> ) — e <Xn7 pn—1> x
polx) = x <po,po>p°( ) <pn_1,pn_1>p"_1( )

Then po, p1, p2,... are orthogonal polynomials.



Theorem (a) Orthogonal polynomials always exist.

(b) The orthogonal polynomial of a fixed degree is unique up
to scaling.

(c) A polynomial p # 0 is an orthogonal polynomial if and
only if {(p,q) =0 for any polynomial g with deg g < deg p.

(d) A polynomial p # 0 is an orthogonal polynomial if and
only if {p,x*) =0 for any 0 < k < degp.

Proof of statement (b): Suppose that P and R are two
orthogonal polynomials of the same degree n. Then

P(x) = a,x" + a,_1x" 1 + -+ a;x + ap and

R(x) = byx" + b,_1x"™1 + -+ + byx + by, where a,, b, # 0.
Consider a polynomial Q(x) = b,P(x) — a,R(x). By
construction, deg Q < n. It follows from statement (c) that
(P,@) = (R,Q)=0. Then

(Q, Q) = (b,P — a,R, Q) = b,(P, Q) — an(R, Q) =0,
which means that @ = 0. Thus R(x) = (a,'b,) P(x).



Example. {p,q) = /_1p(x)q(x) dx.

1
Note that (x”,x") = / x""dx =0 if m+nis
-1
odd. Hence pyx(x) contains only even powers of x
while pok11(x) contains only odd powers of x.

po(x) =1,
Pl(X) = X,

B (x2,1) 1
pa(x) = x* - 1.1) St

B (x3,x) 3
p3(x) = x3 — x.) X=x - X

Po, P1, P2, - - . are called the Legendre polynomials.



Instead of normalization, the orthogonal
polynomials are subject to standardization.

The standardization for the Legendre polynomials is
Pn,(1) = 1. In particular, Py(x) =1, Pi(x) = x,
Py(x) = %(3x2 —1), P3(x) = %(5x3 — 3x).
Problem. Find P4(x).

Let Py(x) = agx* + a3x> + ax? + a;x + ag.

We know that P4(1) =1 and (P4, x*) =0 for
0< k<3

P4(1) = a4+ a3+ a» + ai + ag,

<P4, 1> = %34 + %32 + 230, <P4,X> = %33 + %31,
<P4,X2> = %34 + %32 + %301 <P4,X3> =



as+azta+a+ta=1
%a4+%a2+2a020

§ Eas+3a1 =0
%34—{—%82—1—%30:0

2 2
fa3+ a1 =0

\

2 2
—a3+—a1:O
59315 s a—a=0
733—{—53120

a+ata=1 a =2
2as+2 23 =0 = -3
£d4 + 3a2 + Zag = <~ a=—3
2 2 2. _ 3
sa,+gax+3a =0 a = 3

Thus Py(x) = 5(35x* — 30x2 + 3).



1o —l:

Legendre polynomials



Problem. Find a quadratic polynomial that is the
best least squares fit to the function f(x) = |x| on
the interval [—1,1].

The best least squares fit is a polynomial p(x) that
minimizes the distance relative to the integral norm

I — ol = (/ £(x x)Fdx)m

over all polynomials of degree 2.

The norm ||f — p|| is minimal if p is the orthogonal
projection of the function f on the subspace P; of
polynomials of degree at most 2.



The Legendre polynomials Py, P, P, form an orthogonal basis
for P3. Therefore

(f, Po) (f, P1) (f,Pa)
p(X) = <P0, P0> O(X) <P1, P1> 1(X) + <P27 P2> P2(X)'

1 1
(f, Py) = |x|dx:2/ xdx =1,
-1 0
1
(f,Pl):/ x| xdx =0,
-1
1 2 _ 1
(f, P2) =/ x| 3X2 1dx:/ x(3x* — 1) dx =
- 0

1

1
4
' ~1 2
(PouDo):/ dx =2, <P2>P2>:/ <3X ) dx = =.
1 _1 2 5
2

2n+1

In general, (P,, P,) =




Problem. Find a quadratic polynomial that is the
best least squares fit to the function f(x) = |x| on
the interval [—1,1].

Solution: p(x) = —Po(X)+5P2( )
— % + —(3x —1) = 136(5X +1).






How to evaluate orthogonal polynomials

Suppose pog, p1, P2, - .. are orthogonal polynomials
with respect to an inner product of the form

(p,q) = / p(x)q(x)w(x) dx.

Theorem The polynomials satisfy recurrences
Pn(x) = (aax + Bn) Pa-1(x) + Vn Pa—2(x)

for all n > 2, where «,, 8,,7, are some constants.

Recurrent formulas for the Legendre polynomials:
(n+1)Prii(x) = (2n 4+ 1)xP,(x) — nPy_1(x).
For example, 4P4(x) = 7xP3(x) — 3P,(x).



Definition. Chebyshev polynomials Ty, T1, T, ...

are orthogonal polynomials relative to the inner

product
oy - [P0
, 1 V1 —x2
with the standardization T,(1) = 1.
Remark. “T" is like in “Tschebyscheff".

dx,

Change of variable in the integral: x = cos ¢.

_ [T p(cos¢)g(cos¢)
<p7 q> _ /0 \/m COs QS d¢

— /Oﬁ p(cos ¢) g(cos ¢) do.




Theorem. T,(cos¢) = cos ne.
(Tn, Tr) = /7r T,(cos @) Trm(cos @) dop
0
= / cos(n¢) cos(mp) dp =0 if n# m.
0

Recurrent formula: T,:1(x) = 2xT,(x) — Th-1(x).
To(x) =1, Ti(x) = x,

To(x) = 2x% — 1,

T3(x) = 4x3 — 3x,

Ta(x) =8x* —8x2+1, ...

That is, cos2¢ =2 cos? o—1,

cos 3¢ = 4 cos® ¢ — 3 cos ¢,
cos4p = 8cos*p —8cos?p+ 1, ...



Ty(x) T,0  Tix)

Ty(x)

1
=1

T,()

Chebyshev polynomials



Topics for the final exam: Part |

Elementary linear algebra (Leon 1.1-1.5, 2.1-2.2)

e Systems of linear equations: elementary
operations, Gaussian elimination, back substitution.

e Matrix of coefficients and augmented matrix.
Elementary row operations, row echelon form and
reduced row echelon form.

e Matrix algebra. Inverse matrix.

e Determinants: explicit formulas for 2x2 and
3% 3 matrices, row and column expansions,
elementary row and column operations.



Topics for the final exam: Part ||

Abstract linear algebra (Leon 3.1-3.6, 4.1-4.3)

e Vector spaces (vectors, matrices, polynomials, functional
spaces).

e Subspaces. Nullspace, column space, and row space of a
matrix.

e Span, spanning set. Linear independence.

e Bases and dimension.

e Rank and nullity of a matrix.

e Coordinates relative to a basis.

e Change of basis, transition matrix.

e Linear transformations.

e Matrix transformations.

e Matrix of a linear transformation.

e Change of basis for a linear operator.
e Similarity of matrices.



Topics for the final exam: Parts IlI-1V

Advanced linear algebra (Leon 5.1-5.7, 6.1-6.3)

Euclidean structure in R” (length, angle, dot product).
Orthogonal complement, orthogonal projection.

Inner products and norms.

Least squares problems.

The Gram-Schmidt orthogonalization process.
Orthogonal polynomials.

Eigenvalues, eigenvectors, eigenspaces.
Characteristic polynomial.

Bases of eigenvectors, diagonalization.
Matrix exponentials.

Complex eigenvalues and eigenvectors.
Orthogonal matrices.

Rigid motions, rotations in space.



Proofs to know

Theorem 1 If two nxn matrices A and B are

invertible, then the product AB is also invertible
and (AB)™1=B1A"L.

Theorem 2 If an nxn matrix A is invertible, then
for any n-dimensional column vector b the matrix

equation Ax = b has a unique solution, which is
x = A71b.



Proofs to know

Theorem 3 In any vector space, the zero vector is unique
and the negative vector is unique.

Theorem 4 For any vectors vi,V,, ...,V in a vector space
V/, the set of all linear combinations rivy + vy + - - - + revy,
ri € R is a subspace of V.

Theorem 5 Vectors vy, vy, ..., v, (k> 2) are linearly
dependent if and only if one of them is a linear combination of
the other kK — 1 vectors.

Theorem 6 Functions fi,f,...,f, € C[a, b] are linearly
independent whenever their Wronskian W([fi, f, ..., f,] is well
defined and not identically zero on [a, b].



Proofs to know

Theorem 7 Any linear mapping L : R™ — R” is a matrix
transformation.

Theorem 8 The orthogonal complement of the row space of
a matrix A is the nullspace of A.

Theorem 9 If nonzero vectors in an inner product space are
orthogonal to each other, then they are linearly independent.

Theorem 10 )\ € R is an eigenvalue of a matrix A if and
only if det(A— \/) =0.

Theorem 11 Similar matrices have the same characteristic
polynomial.

Theorem 12 If vy, vy, ..., v, are eigenvectors of the same
linear operator L associated with distinct eigenvalues
A1, A2y ..oy Ak, then vy, vo, ... v, are linearly independent.



Proofs to know

Theorem 13 A square matrix is orthogonal if and
only if its columns form an orthonormal set.



Problem. Consider a linear operator L :R3 — R3
defined by L(v) = vy x v, where
vo = (3/5,0,—4/5).

(a) Find the matrix B of the operator L.
(b) Find the range and kernel of L.
(c) Find the eigenvalues of L.

(d) Find the matrix of the operator L2 (L applied
2013 times).



L(v) =vo x v, vo=(3/5,0,—4/5).
Let v=(x,y,z)= xe; + ye, + ze3. Then

e e e3
L(v)=voxv=[3/5 0 —4/5

X y z

= 5ye1— (5x +32)ex + dyes.

In particular, L(e;) = — fes, L(e;) = ze1 + e,
L(E3) = —%62.

0 4/5 0
Therefore B=|—-4/5 0 -3/5

0 3/5 0



0 4/5 0
B=1|-4/5 0 -3/5

0 3/5 0
The range of the operator L is spanned by columns
of the matrix B. It follows that Range(L) is the
plane spanned by v; = (0,1,0) and v, = (4,0, 3).

The kernel of L is the nullspace of the matrix B,
i.e., the solution set for the equation Bx = 0.

0 4/5 0 10 3/4
—4/5 0 -3/5| =01 0
0 3/5 0 00 0

— x+3z=y=0 = x=1(-3/4,0,1).



Alternatively, the kernel of L is the set of vectors
v € R3 such that L(v) =vg x v=0.

It follows that this is the line spanned by
vo = (3/5,0,—4/5).

Characteristic polynomial of the matrix B:

—\ 4/5 0
det(B— )= |—4/5 —\ —3/5
0 3/5 —)\

= —X\3—(3/5)2A—(4/5)*\ = —A3—\ = —A(A2+1).

The eigenvalues are 0, i/, and —/.



The matrix of the operator L2913 is 52013,

Since the matrix B has eigenvalues 0, 7/, and —1/, it is
diagonalizable in C3. Namely, B = UDU™!, where
U is an invertible matrix with complex entries and

00 O
D=10 1/ 0
00 —i

Then B?013 = yD?13y~1 We have that D?13 =
= diag (0, i3, (—1)*1) = diag(0,i,—i) =D
Hence
0 4/5 0
B3 = UbU'=B=|-4/5 0 -3/5
0 3/5 0



