
MATH 323

Linear Algebra

Lecture 26:

Orthogonal polynomials.
Review for the final exam.



Orthogonal polynomials

P : the vector space of all polynomials with real

coefficients: p(x) = a0 + a1x + a2x
2 + · · ·+ anx

n.

Basis for P : 1, x , x2, . . . , xn, . . .

Suppose that P is endowed with an inner product.

Definition. Orthogonal polynomials (relative to

the inner product) are polynomials p0, p1, p2, . . .
such that deg pn = n (p0 is a nonzero constant)

and 〈pn, pm〉 = 0 for n 6= m.



Orthogonal polynomials can be obtained by applying

the Gram-Schmidt orthogonalization process
to the basis 1, x , x2, . . . :

p0(x) = 1,

p1(x) = x − 〈x , p0〉
〈p0, p0〉

p0(x),

p2(x) = x2 − 〈x2, p0〉
〈p0, p0〉

p0(x)−
〈x2, p1〉
〈p1, p1〉

p1(x),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pn(x) = xn − 〈xn, p0〉
〈p0, p0〉

p0(x)− · · · − 〈xn, pn−1〉
〈pn−1, pn−1〉

pn−1(x),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Then p0, p1, p2, . . . are orthogonal polynomials.



Theorem (a) Orthogonal polynomials always exist.

(b) The orthogonal polynomial of a fixed degree is unique up
to scaling.

(c) A polynomial p 6= 0 is an orthogonal polynomial if and
only if 〈p, q〉 = 0 for any polynomial q with deg q < deg p.

(d) A polynomial p 6= 0 is an orthogonal polynomial if and
only if 〈p, xk〉 = 0 for any 0 ≤ k < deg p.

Proof of statement (b): Suppose that P and R are two
orthogonal polynomials of the same degree n. Then
P(x) = anx

n + an−1x
n−1 + · · ·+ a1x + a0 and

R(x) = bnx
n + bn−1x

n−1 + · · ·+ b1x + b0, where an, bn 6= 0.
Consider a polynomial Q(x) = bnP(x)− anR(x). By
construction, degQ < n. It follows from statement (c) that
〈P,Q〉 = 〈R ,Q〉 = 0. Then

〈Q,Q〉 = 〈bnP − anR ,Q〉 = bn〈P,Q〉 − an〈R ,Q〉 = 0,

which means that Q = 0. Thus R(x) = (a−1

n
bn)P(x).



Example. 〈p, q〉 =
∫

1

−1

p(x)q(x) dx .

Note that 〈xm, xn〉 =
∫

1

−1

xm+n dx = 0 if m + n is

odd. Hence p2k(x) contains only even powers of x

while p2k+1(x) contains only odd powers of x .

p0(x) = 1,

p1(x) = x ,

p2(x) = x2 − 〈x2, 1〉
〈1, 1〉 = x2 − 1

3
,

p3(x) = x3 − 〈x3, x〉
〈x , x〉 x = x3 − 3

5
x .

p0, p1, p2, . . . are called the Legendre polynomials.



Instead of normalization, the orthogonal
polynomials are subject to standardization.

The standardization for the Legendre polynomials is
Pn(1) = 1. In particular, P0(x) = 1, P1(x) = x ,

P2(x) =
1

2
(3x2 − 1), P3(x) =

1

2
(5x3 − 3x).

Problem. Find P4(x).

Let P4(x) = a4x
4 + a3x

3 + a2x
2 + a1x + a0.

We know that P4(1) = 1 and 〈P4, x
k〉 = 0 for

0 ≤ k ≤ 3.

P4(1) = a4 + a3 + a2 + a1 + a0,

〈P4, 1〉 = 2

5
a4 +

2

3
a2 + 2a0, 〈P4, x〉 = 2

5
a3 +

2

3
a1,

〈P4, x
2〉 = 2

7
a4 +

2

5
a2 +

2

3
a0, 〈P4, x

3〉 = 2

7
a3 +

2

5
a1.




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a4 + a3 + a2 + a1 + a0 = 1
2

5
a4 +

2

3
a2 + 2a0 = 0

2

5
a3 +

2

3
a1 = 0

2

7
a4 +

2

5
a2 +

2

3
a0 = 0

2

7
a3 +

2

5
a1 = 0

{

2

5
a3 +

2

3
a1 = 0

2

7
a3 +

2

5
a1 = 0

=⇒ a1 = a3 = 0











a4 + a2 + a0 = 1
2

5
a4 +

2

3
a2 + 2a0 = 0

2

7
a4 +

2

5
a2 +

2

3
a0 = 0

⇐⇒











a4 =
35

8

a2 = −30

8

a0 =
3

8

Thus P4(x) =
1

8
(35x4 − 30x2 + 3).



Legendre polynomials



Problem. Find a quadratic polynomial that is the
best least squares fit to the function f (x) = |x | on

the interval [−1, 1].

The best least squares fit is a polynomial p(x) that
minimizes the distance relative to the integral norm

‖f − p‖ =

(
∫

1

−1

|f (x)− p(x)|2 dx
)1/2

over all polynomials of degree 2.

The norm ‖f − p‖ is minimal if p is the orthogonal
projection of the function f on the subspace P3 of
polynomials of degree at most 2.



The Legendre polynomials P0,P1,P2 form an orthogonal basis
for P3. Therefore

p(x) =
〈f ,P0〉
〈P0,P0〉

P0(x) +
〈f ,P1〉
〈P1,P1〉

P1(x) +
〈f ,P2〉
〈P2,P2〉

P2(x).

〈f ,P0〉 =
∫

1

−1

|x | dx = 2

∫

1

0

x dx = 1,

〈f ,P1〉 =
∫

1

−1

|x | x dx = 0,

〈f ,P2〉 =
∫

1

−1

|x | 3x
2 − 1

2
dx =

∫

1

0

x(3x2 − 1) dx =
1

4
,

〈P0,P0〉 =
∫

1

−1

dx = 2, 〈P2,P2〉 =
∫

1

−1

(

3x2 − 1

2

)2

dx =
2

5
.

In general, 〈Pn,Pn〉 =
2

2n + 1
.



Problem. Find a quadratic polynomial that is the

best least squares fit to the function f (x) = |x | on
the interval [−1, 1].

Solution: p(x) =
1

2
P0(x) +

5

8
P2(x)

=
1

2
+

5

16
(3x2 − 1) =

3

16
(5x2 + 1).





How to evaluate orthogonal polynomials

Suppose p0, p1, p2, . . . are orthogonal polynomials
with respect to an inner product of the form

〈p, q〉 =
∫

b

a

p(x)q(x)w(x) dx .

Theorem The polynomials satisfy recurrences

pn(x) = (αnx + βn) pn−1(x) + γn pn−2(x)

for all n ≥ 2, where αn, βn, γn are some constants.

Recurrent formulas for the Legendre polynomials:

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x).

For example, 4P4(x) = 7xP3(x)− 3P2(x).



Definition. Chebyshev polynomials T0,T1,T2, . . .
are orthogonal polynomials relative to the inner

product

〈p, q〉 =
∫

1

−1

p(x)q(x)√
1− x2

dx ,

with the standardization Tn(1) = 1.

Remark. “T” is like in “Tschebyscheff”.

Change of variable in the integral: x = cosφ.

〈p, q〉 = −
∫ π

0

p(cosφ) q(cosφ)
√

1− cos2 φ
cos′ φ dφ

=

∫ π

0

p(cosφ) q(cosφ) dφ.



Theorem. Tn(cosφ) = cos nφ.

〈Tn,Tm〉 =
∫

π

0

Tn(cosφ)Tm(cosφ) dφ

=

∫

π

0

cos(nφ) cos(mφ) dφ = 0 if n 6= m.

Recurrent formula: Tn+1(x) = 2xTn(x)− Tn−1(x).

T0(x) = 1, T1(x) = x ,
T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x ,
T4(x) = 8x4 − 8x2 + 1, . . .

That is, cos 2φ = 2 cos2 φ− 1,

cos 3φ = 4 cos3 φ− 3 cosφ,
cos 4φ = 8 cos4 φ− 8 cos2 φ+ 1, . . .



Chebyshev polynomials



Topics for the final exam: Part I

Elementary linear algebra (Leon 1.1–1.5, 2.1–2.2)

• Systems of linear equations: elementary
operations, Gaussian elimination, back substitution.

• Matrix of coefficients and augmented matrix.
Elementary row operations, row echelon form and
reduced row echelon form.

• Matrix algebra. Inverse matrix.

• Determinants: explicit formulas for 2×2 and
3×3 matrices, row and column expansions,

elementary row and column operations.



Topics for the final exam: Part II

Abstract linear algebra (Leon 3.1–3.6, 4.1–4.3)

• Vector spaces (vectors, matrices, polynomials, functional
spaces).
• Subspaces. Nullspace, column space, and row space of a
matrix.
• Span, spanning set. Linear independence.
• Bases and dimension.
• Rank and nullity of a matrix.
• Coordinates relative to a basis.
• Change of basis, transition matrix.

• Linear transformations.
• Matrix transformations.
• Matrix of a linear transformation.
• Change of basis for a linear operator.
• Similarity of matrices.



Topics for the final exam: Parts III–IV

Advanced linear algebra (Leon 5.1–5.7, 6.1–6.3)

• Euclidean structure in Rn (length, angle, dot product).
• Orthogonal complement, orthogonal projection.
• Inner products and norms.
• Least squares problems.
• The Gram-Schmidt orthogonalization process.
• Orthogonal polynomials.

• Eigenvalues, eigenvectors, eigenspaces.
• Characteristic polynomial.
• Bases of eigenvectors, diagonalization.
• Matrix exponentials.
• Complex eigenvalues and eigenvectors.
• Orthogonal matrices.
• Rigid motions, rotations in space.



Proofs to know

Theorem 1 If two n×n matrices A and B are

invertible, then the product AB is also invertible
and (AB)−1 = B−1A−1.

Theorem 2 If an n×n matrix A is invertible, then
for any n-dimensional column vector b the matrix

equation Ax = b has a unique solution, which is
x = A−1b.



Proofs to know

Theorem 3 In any vector space, the zero vector is unique
and the negative vector is unique.

Theorem 4 For any vectors v1, v2, . . . , vk in a vector space
V , the set of all linear combinations r1v1 + r2v2 + · · ·+ rkvk ,
ri ∈ R is a subspace of V .

Theorem 5 Vectors v1, v2, . . . , vk (k ≥ 2) are linearly
dependent if and only if one of them is a linear combination of
the other k − 1 vectors.

Theorem 6 Functions f1, f2, . . . , fn ∈ C [a, b] are linearly
independent whenever their Wronskian W [f1, f2, . . . , fn] is well
defined and not identically zero on [a, b].



Proofs to know

Theorem 7 Any linear mapping L : Rm → Rn is a matrix
transformation.

Theorem 8 The orthogonal complement of the row space of
a matrix A is the nullspace of A.

Theorem 9 If nonzero vectors in an inner product space are
orthogonal to each other, then they are linearly independent.

Theorem 10 λ ∈ R is an eigenvalue of a matrix A if and
only if det(A− λI ) = 0.

Theorem 11 Similar matrices have the same characteristic
polynomial.

Theorem 12 If v1, v2, . . . , vk are eigenvectors of the same
linear operator L associated with distinct eigenvalues
λ1, λ2, . . . , λk , then v1, v2, . . . , vk are linearly independent.



Proofs to know

Theorem 13 A square matrix is orthogonal if and
only if its columns form an orthonormal set.



Problem. Consider a linear operator L : R3 → R3

defined by L(v) = v0 × v, where
v0 = (3/5, 0,−4/5).

(a) Find the matrix B of the operator L.

(b) Find the range and kernel of L.
(c) Find the eigenvalues of L.

(d) Find the matrix of the operator L2013 (L applied
2013 times).



L(v) = v0 × v, v0 = (3/5, 0,−4/5).

Let v = (x , y , z) = xe1 + ye2 + ze3. Then

L(v) = v0 × v =

∣

∣

∣

∣

∣

∣

e1 e2 e3
3/5 0 −4/5

x y z

∣

∣

∣

∣

∣

∣

= 4

5
ye1 −

(

4

5
x + 3

5
z
)

e2 +
3

5
ye3.

In particular, L(e1) = − 4

5
e2, L(e2) =

4

5
e1 +

3

5
e3,

L(e3) = −3

5
e2.

Therefore B =





0 4/5 0
−4/5 0 −3/5
0 3/5 0



.



B =





0 4/5 0

−4/5 0 −3/5
0 3/5 0



.

The range of the operator L is spanned by columns

of the matrix B . It follows that Range(L) is the
plane spanned by v1 = (0, 1, 0) and v2 = (4, 0, 3).

The kernel of L is the nullspace of the matrix B ,

i.e., the solution set for the equation Bx = 0.




0 4/5 0
−4/5 0 −3/5

0 3/5 0



 →





1 0 3/4
0 1 0

0 0 0





=⇒ x + 3

4
z = y = 0 =⇒ x = t(−3/4, 0, 1).



Alternatively, the kernel of L is the set of vectors

v ∈ R3 such that L(v) = v0 × v = 0.

It follows that this is the line spanned by

v0 = (3/5, 0,−4/5).

Characteristic polynomial of the matrix B :

det(B − λI ) =

∣

∣

∣

∣

∣

∣

−λ 4/5 0
−4/5 −λ −3/5
0 3/5 −λ

∣

∣

∣

∣

∣

∣

= −λ3−(3/5)2λ−(4/5)2λ = −λ3−λ = −λ(λ2+1).

The eigenvalues are 0, i , and −i .



The matrix of the operator L2013 is B2013.

Since the matrix B has eigenvalues 0, i , and −i , it is

diagonalizable in C
3. Namely, B = UDU−1, where

U is an invertible matrix with complex entries and

D =





0 0 0
0 i 0

0 0 −i



.

Then B2013 = UD2013U−1. We have that D2013 =
= diag

(

0, i 2013, (−i)2013
)

= diag(0, i ,−i) = D.
Hence

B2013 = UDU−1 = B =





0 4/5 0

−4/5 0 −3/5
0 3/5 0



.


