Homework assignment \#11

Problem 1. Consider the inner product space $C[0,1]$ with the inner product defined by

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

and the induced norm. Find the angle θ between the functions $h_{1}(x)=1$ and $h_{2}(x)=x$.
Problem 2. Sketch the set of points $\mathbf{x}=\left(x_{1}, x_{2}\right)$ in \mathbb{R}^{2} such that
(i) $\|\mathrm{x}\|_{2}=1$,
(ii) $\|\mathrm{x}\|_{1}=1$,
(iii) $\|\mathrm{x}\|_{\infty}=1$.

Problem 3. Suppose $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal basis for an inner product space V. Find the angle θ between the vectors $\mathbf{u}=\mathbf{u}_{1}+2 \mathbf{u}_{2}+2 \mathbf{u}_{3}$ and $\mathbf{v}=\mathbf{u}_{1}+7 \mathbf{u}_{3}$.

Problem 4. Consider the inner product space $C[-1,1]$ with the inner product defined by

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

and the induced norm. Find the best least squares approximation to the function $f(x)=x^{1 / 3}$ on $[-1,1]$ by a linear function $\ell(x)=c_{1}+c_{2} x$.
[Hint: first show that the functions $h_{1}(x)=1$ and $h_{2}(x)=x$ are orthogonal.]
Problem 5. Consider the inner product space from Problem 1. Let V be the subspace spanned by the functions $h_{1}(x)=1$ and $h_{2}(x)=2 x-1$. Find the best least squares approximation to the function $f(x)=\sqrt{x}$ on $[0,1]$ by a function from V. [Hint: first show that h_{1} and h_{2} are orthogonal.]

Problem 6. Use the Gram-Schmidt process to find an orthonormal basis for the column space of the matrix

$$
\left(\begin{array}{rr}
-1 & 3 \\
1 & 5
\end{array}\right)
$$

Problem 7. Given the basis $\{(1,2,-2),(4,3,2),(1,2,1)\}$ for \mathbb{R}^{3}, use the Gram-Schmidt process to obtain an orthonormal basis.

Problem 8. Consider the inner product space from Problem 4. Find an orthonormal basis for the subspace of $C[-1,1]$ spanned by functions $h_{1}(x)=1, h_{2}(x)=x$ and $h_{3}(x)=x^{2}$.

Problem 9. Verify that vectors $\mathbf{x}_{1}=\frac{1}{2}(1,1,1,-1)$ and $\mathbf{x}_{2}=\frac{1}{6}(1,1,3,5)$ form an orthonormal set in \mathbb{R}^{4}. Extend this set to an orthonormal basis for \mathbb{R}^{4}.
[Hint: first find a basis for the orthogonal complement of the subspace spanned by \mathbf{x}_{1} and \mathbf{x}_{2} and then use the Gram-Schmidt process.]

Problem 10. Use the Gram-Schmidt process to find an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by vectors $\mathbf{x}_{1}=(4,2,2,1), \mathbf{x}_{2}=(2,0,0,2)$ and $\mathbf{x}_{3}=(1,1,-1,1)$.

