MATH 323
 Linear Algebra
 Lecture 11:
 Linear independence (continued). Basis and dimension.

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$ are called linearly dependent if they satisfy a relation

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where the coefficients $r_{1}, \ldots, r_{k} \in \mathbb{R}$ are not all equal to zero. Otherwise vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are called linearly independent. That is, if

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0} \Longrightarrow r_{1}=\cdots=r_{k}=0 .
$$

A set $S \subset V$ is linearly dependent if one can find some distinct linearly dependent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in S. Otherwise S is linearly independent.

Theorem The following conditions are equivalent:
(i) vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly dependent;
(ii) one of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a linear
combination of the other $k-1$ vectors.
Proof: (i) \Longrightarrow (ii) Suppose that

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where $r_{i} \neq 0$ for some $1 \leq i \leq k$. Then

$$
\mathbf{v}_{i}=-\frac{r_{1}}{r_{i}} \mathbf{v}_{1}-\cdots-\frac{r_{i-1}}{r_{i}} \mathbf{v}_{i-1}-\frac{r_{i+1}}{r_{i}} \mathbf{v}_{i+1}-\cdots-\frac{r_{k}}{r_{i}} \mathbf{v}_{k} .
$$

(ii) \Longrightarrow (i) Suppose that

$$
\mathbf{v}_{i}=s_{1} \mathbf{v}_{1}+\cdots+s_{i-1} \mathbf{v}_{i-1}+s_{i+1} \mathbf{v}_{i+1}+\cdots+s_{k} \mathbf{v}_{k}
$$

for some scalars s_{j}. Then
$s_{1} \mathbf{v}_{1}+\cdots+s_{i-1} \mathbf{v}_{i-1}-\mathbf{v}_{i}+s_{i+1} \mathbf{v}_{i+1}+\cdots+s_{k} \mathbf{v}_{k}=\mathbf{0}$.

Problem. Let $A=\left(\begin{array}{ll}-1 & 1 \\ -1 & 0\end{array}\right)$. Determine whether matrices A, A^{2}, and A^{3} are linearly independent.

We have $A=\left(\begin{array}{ll}-1 & 1 \\ -1 & 0\end{array}\right), \quad A^{2}=\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right), \quad A^{3}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
The task is to check if there exist $r_{1}, r_{2}, r_{3} \in \mathbb{R}$ not all zero such that $r_{1} A+r_{2} A^{2}+r_{3} A^{3}=O$.
This matrix equation is equivalent to a system

$$
\left\{\begin{array}{l}
-r_{1}+0 r_{2}+r_{3}=0 \\
r_{1}-r_{2}+0 r_{3}=0 \\
-r_{1}+r_{2}+0 r_{3}=0 \\
0 r_{1}-r_{2}+r_{3}=0
\end{array} \quad\left(\begin{array}{rrr|l}
-1 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\right.
$$

The row echelon form of the augmented matrix shows there is a free variable. Hence the system has a nonzero solution so that the matrices are linearly dependent (one relation is $\left.A+A^{2}+A^{3}=0\right)$.

Problem. Show that functions $e^{x}, e^{2 x}$, and $e^{3 x}$ are linearly independent in $C^{\infty}(\mathbb{R})$.

Suppose that $a e^{x}+b e^{2 x}+c e^{3 x}=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a=b=c=0$.
Differentiate this identity twice:

$$
\begin{gathered}
a e^{x}+b e^{2 x}+c e^{3 x}=0, \\
a e^{x}+2 b e^{2 x}+3 c e^{3 x}=0, \\
a e^{x}+4 b e^{2 x}+9 c e^{3 x}=0 .
\end{gathered}
$$

It follows that $A(x) \mathbf{v}=\mathbf{0}$, where

$$
A(x)=\left(\begin{array}{ccc}
e^{x} & e^{2 x} & e^{3 x} \\
e^{x} & 2 e^{2 x} & 3 e^{3 x} \\
e^{x} & 4 e^{2 x} & 9 e^{3 x}
\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) .
$$

$A(x)=\left(\begin{array}{ccc}e^{x} & e^{2 x} & e^{3 x} \\ e^{x} & 2 e^{2 x} & 3 e^{3 x} \\ e^{x} & 4 e^{2 x} & 9 e^{3 x}\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$.
$\operatorname{det} A(x)=e^{x}\left|\begin{array}{ccc}1 & e^{2 x} & e^{3 x} \\ 1 & 2 e^{2 x} & 3 e^{3 x} \\ 1 & 4 e^{2 x} & 9 e^{3 x}\end{array}\right|=e^{x} e^{2 x}\left|\begin{array}{ccc}1 & 1 & e^{3 x} \\ 1 & 2 & 3 e^{3 x} \\ 1 & 4 & 9 e^{3 x}\end{array}\right|$
$=e^{\times} e^{2 x} e^{3 x}\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right|=e^{6 x}\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right|=e^{6 x}\left|\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 4 & 9\end{array}\right|$
$=e^{6 x}\left|\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 3 & 8\end{array}\right|=e^{6 x}\left|\begin{array}{ll}1 & 2 \\ 3 & 8\end{array}\right|=2 e^{6 x} \neq 0$.
Since the matrix $A(x)$ is invertible, we obtain $A(x) \mathbf{v}=\mathbf{0} \Longrightarrow \mathbf{v}=\mathbf{0} \Longrightarrow a=b=c=0$

Wronskian

Let $f_{1}, f_{2}, \ldots, f_{n}$ be smooth functions on an interval $[a, b]$. The Wronskian $W\left[f_{1}, f_{2}, \ldots, f_{n}\right]$ is a function on $[a, b]$ defined by

$$
W\left[f_{1}, f_{2}, \ldots, f_{n}\right](x)=\left|\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \cdots & f_{n}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \cdots & f_{n}^{\prime}(x) \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{(n-1)}(x) & f_{2}^{(n-1)}(x) & \cdots & f_{n}^{(n-1)}(x)
\end{array}\right| .
$$

Theorem If $W\left[f_{1}, f_{2}, \ldots, f_{n}\right]\left(x_{0}\right) \neq 0$ for some $x_{0} \in[a, b]$ then the functions $f_{1}, f_{2}, \ldots, f_{n}$ are linearly independent in $C[a, b]$.

Basis

Definition. Let V be a vector space. Any linearly independent spanning set for V is called a basis.

Suppose that a set $S \subset V$ is a basis for V. "Spanning set" means that any vector $\mathbf{v} \in V$ can be represented as a linear combination

$$
\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}
$$

where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are distinct vectors from S and $r_{1}, \ldots, r_{k} \in \mathbb{R}$. "Linearly independent" implies that the above representation is unique:

$$
\begin{aligned}
& \mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=r_{1}^{\prime} \mathbf{v}_{1}+r_{2}^{\prime} \mathbf{v}_{2}+\cdots+r_{k}^{\prime} \mathbf{v}_{k} \\
& \Longrightarrow\left(r_{1}-r_{1}^{\prime}\right) \mathbf{v}_{1}+\left(r_{2}-r_{2}^{\prime}\right) \mathbf{v}_{2}+\cdots+\left(r_{k}-r_{k}^{\prime}\right) \mathbf{v}_{k}=\mathbf{0} \\
& \Longrightarrow r_{1}-r_{1}^{\prime}=r_{2}-r_{2}^{\prime}=\ldots=r_{k}-r_{k}^{\prime}=0
\end{aligned}
$$

Basis

Definition. Let V be a vector space. Any linearly independent spanning set for V is called a basis.

Theorem A nonempty set $S \subset V$ is a basis for V if and only if any vector $\mathbf{v} \in V$ is uniquely represented as a linear combination
$\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}$, where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are distinct vectors from S and $r_{1}, \ldots, r_{k} \in \mathbb{R}$.

Remark on uniqueness. Expansions $\mathbf{v}=2 \mathbf{v}_{1}-\mathbf{v}_{2}$, $\mathbf{v}=-\mathbf{v}_{2}+2 \mathbf{v}_{1}$, and $\mathbf{v}=2 \mathbf{v}_{1}-\mathbf{v}_{2}+0 \mathbf{v}_{3}$ are considered the same.

Examples. - Standard basis for \mathbb{R}^{n} :
$\mathbf{e}_{1}=(1,0,0, \ldots, 0,0), \mathbf{e}_{2}=(0,1,0, \ldots, 0,0), \ldots$,
$\mathbf{e}_{n}=(0,0,0, \ldots, 0,1)$.
Indeed, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{n} \mathbf{e}_{n}$.

- Matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
form a basis for $\mathcal{M}_{2,2}(\mathbb{R})$.
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+b\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)+c\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)+d\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.
- Polynomials $1, x, x^{2}, \ldots, x^{n-1}$ form a basis for $\mathcal{P}_{n}=\left\{a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}: a_{i} \in \mathbb{R}\right\}$.
- The infinite set $\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$ is a basis for \mathcal{P}, the space of all polynomials.

Let $\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$ and $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{R}$. The vector equation $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{v}$ is equivalent to the matrix equation $A \mathbf{x}=\mathbf{v}$, where

$$
A=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right), \quad \mathbf{x}=\left(\begin{array}{c}
r_{1} \\
\vdots \\
r_{k}
\end{array}\right) .
$$

$$
r_{1}\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{n 1}
\end{array}\right)+r_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{n 2}
\end{array}\right)+\cdots+r_{k}\left(\begin{array}{c}
a_{1 k} \\
a_{2 k} \\
\vdots \\
a_{n k}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \cdots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n k}
\end{array}\right)\left(\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{k}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right) \quad \Longleftrightarrow \quad A \mathbf{x}=\mathbf{v}
$$

Let $\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$ and $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{R}$. The vector equation $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{v}$ is equivalent to the matrix equation $A \mathbf{x}=\mathbf{v}$, where

$$
A=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right), \quad \mathbf{x}=\left(\begin{array}{c}
r_{1} \\
\vdots \\
r_{k}
\end{array}\right) .
$$

That is, A is the $n \times k$ matrix such that vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are consecutive columns of A.

- Vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ span \mathbb{R}^{n} if the row echelon form of A has no zero rows.
- Vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly independent if the row echelon form of A has a leading entry in each column (no free variables).

spanning
no linear independence

no spanning linear independence

no spanning no linear independence

Bases for \mathbb{R}^{n}

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ be vectors in \mathbb{R}^{n}.
Theorem 1 If $k<n$ then the vectors
$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ do not span \mathbb{R}^{n}.
Theorem 2 If $k>n$ then the vectors
$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly dependent.
Theorem 3 If $k=n$ then the following conditions are equivalent:
(i) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for \mathbb{R}^{n};
(ii) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a spanning set for \mathbb{R}^{n};
(iii) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent set.

Example. Consider vectors $\mathbf{v}_{1}=(1,-1,1)$,
$\mathbf{v}_{2}=(1,0,0), \mathbf{v}_{3}=(1,1,1)$, and $\mathbf{v}_{4}=(1,2,4)$ in \mathbb{R}^{3}.
Vectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent (as they are not parallel), but they do not span \mathbb{R}^{3}.

Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent since

$$
\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 0 & 1
\end{array}\left|=-\left|\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right|=-(-2)=2 \neq 0\right.
$$

Therefore $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis for \mathbb{R}^{3}.
Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ span \mathbb{R}^{3} (because $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ already span \mathbb{R}^{3}), but they are linearly dependent.

Dimension

Theorem 1 Any vector space has a basis.
Theorem 2 If a vector space V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition. The dimension of a vector space V, denoted $\operatorname{dim} V$, is the number of elements in any of its bases.

Examples. • $\operatorname{dim} \mathbb{R}^{n}=n$

- $\mathcal{M}_{2,2}(\mathbb{R}):$ the space of 2×2 matrices $\operatorname{dim} \mathcal{M}_{2,2}(\mathbb{R})=4$
- $\mathcal{M}_{m, n}(\mathbb{R})$: the space of $m \times n$ matrices $\operatorname{dim} \mathcal{M}_{m, n}(\mathbb{R})=m n$
- \mathcal{P}_{n} : polynomials of degree less than n $\operatorname{dim} \mathcal{P}_{n}=n$
- \mathcal{P} : the space of all polynomials $\operatorname{dim} \mathcal{P}=\infty$
- $\{\mathbf{0}\}$: the trivial vector space $\operatorname{dim}\{\mathbf{0}\}=0$

