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Lecture 20:

Diagonalization (continued).
Euclidean structure in R

n.
Orthogonality.



Diagonalization

Theorem 1 Let L be a linear operator on a finite-dimensional
vector space V . Then the following conditions are equivalent:

• the matrix of L with respect to some basis is diagonal;
• there exists a basis for V formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these
conditions.

Theorem 2 Let A be an n×n matrix. Then the following
conditions are equivalent:

• A is the matrix of a diagonalizable operator;
• A is similar to a diagonal matrix, i.e., it is represented as
A = UBU−1, where the matrix B is diagonal;
• there exists a basis for Rn formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.



To diagonalize an n×n matrix A is to find a diagonal matrix B

and an invertible matrix U such that A = UBU−1.

Suppose there exists a basis v1, . . . , vn for Rn consisting of
eigenvectors of A. That is, Avk = λkvk , where λk ∈ R.

Then A = UBU−1, where B = diag(λ1, λ2, . . . , λn) and U is
a transition matrix whose columns are vectors v1, v2, . . . , vn.

Example. A =

(

4 3
0 1

)

. det(A− λI ) = (4− λ)(1− λ).

Eigenvalues: λ1 = 4, λ2 = 1.

Associated eigenvectors: v1 =

(

1
0

)

, v2 =

(

−1
1

)

.

Thus A = UBU−1, where

B =

(

4 0
0 1

)

, U =

(

1 −1
0 1

)

.



Suppose we have a problem that involves a square
matrix A in the context of matrix multiplication.

Also, suppose that the case when A is a diagonal

matrix is simple. Then the diagonalization may
help in solving this problem (or may not). Namely,

it may reduce the case of a diagonalizable matrix to
that of a diagonal one.

An example of such a problem is, given a square

matrix A, to find its power Ak :
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Problem. Let A =

(

4 3
0 1

)

. Find A5.

We know that A = UBU−1, where

B =

(

4 0
0 1

)

, U =

(

1 −1
0 1

)

.

Then A5 = UBU−1UBU−1UBU−1UBU−1UBU−1

= UB5U−1 =

(

1 −1

0 1

)(

1024 0

0 1

)(

1 1

0 1

)

=

(

1024 −1

0 1

)(

1 1

0 1

)

=

(

1024 1023

0 1

)

.



Problem. Let A =

(

4 3
0 1

)

. Find Ak (k ≥ 1).

We know that A = UBU−1, where

B =

(

4 0

0 1

)

, U =

(

1 −1

0 1

)

.

Then

Ak = UBkU−1 =

(

1 −1

0 1

)(

4k 0

0 1

)(

1 1

0 1

)

=

(

4k −1

0 1

)(

1 1

0 1

)

=

(

4k 4k − 1

0 1

)

.



Problem. Let A =

(

4 3
0 1

)

. Find a matrix C

such that C 2 = A.

We know that A = UBU−1, where

B =

(

4 0
0 1

)

, U =

(

1 −1
0 1

)

.

Suppose that D2 = B for some matrix D. Let C = UDU−1.
Then C 2 = UDU−1UDU−1 = UD2U−1 = UBU−1 = A.

We can take D =

(√
4 0

0
√
1

)

=

(

2 0
0 1

)

.

Then C =

(

1 −1
0 1

)(

2 0
0 1

)(

1 1
0 1

)

=

(

2 1
0 1

)

.



Initial value problem for a system of linear ODEs:
{

dx
dt

= 4x + 3y ,
dy

dt
= y ,

x(0) = 1, y(0) = 1.

The system can be rewritten in vector form:

dv

dt
= Av, where A =

(

4 3
0 1

)

, v =

(

x

y

)

.

Matrix A is diagonalizable: A = UBU−1, where

B =

(

4 0
0 1

)

, U =

(

1 −1
0 1

)

.

Let w =

(

w1

w2

)

be coordinates of the vector v relative to the

basis v1 = (1, 0), v2 = (−1, 1) of eigenvectors of A. Then

v = Uw =⇒ w = U−1v.



It follows that

dw

dt
=

d

dt
(U−1v) = U−1

dv

dt
= U−1Av = U−1AUw.

Hence
dw

dt
= Bw ⇐⇒

{

dw1

dt
= 4w1,

dw2

dt
= w2.

General solution: w1(t) = c1e
4t , w2(t) = c2e

t , where c1, c2 ∈ R.

Initial condition:

w(0) = U−1v(0) =

(

1 −1
0 1

)

−1(

1
1

)

=

(

1 1
0 1

)(

1
1

)

=

(

2
1

)

.

Thus w1(t) = 2e4t , w2(t) = et . Then
(

x(t)
y (t)

)

= Uw(t) =

(

1 −1
0 1

)(

2e4t

et

)

=

(

2e4t−et

et

)

.



Vectors: geometric approach

A

B

A′

B ′

• A vector is represented by a directed segment.

• Directed segment is drawn as an arrow.
• Different arrows represent the same vector if

they are of the same length and direction.



Vectors: geometric approach

A

B

A′

B ′

v

v

−→
AB denotes the vector represented by the arrow
with tip at B and tail at A.
−→
AA is called the zero vector and denoted 0.



Vectors: geometric approach

A

B

A′

B ′

−v

v

If v =
−→
AB then

−→
BA is called the negative vector of

v and denoted −v.



Linear structure: vector addition

Given vectors a and b, their sum a+ b is defined

by the rule
−→
AB +

−→
BC =

−→
AC .

That is, choose points A,B ,C so that
−→
AB = a

and
−→
BC = b. Then a+ b =

−→
AC .

A

B
C

A′

B ′

C ′

a

b

a+ b

a

b

a+ b



The difference of the two vectors is defined as

a− b = a+ (−b).

a− b

b

a



Linear structure: scalar multiplication

Let v be a vector and r ∈ R. By definition, rv is a

vector whose magnitude is |r | times the magnitude
of v. The direction of rv coincides with that of v if

r > 0. If r < 0 then the directions of rv and v are
opposite.

v

3v

−2v



Beyond linearity: length of a vector

The length (or the magnitude) of a vector
−→
AB is

the length of the representing segment AB . The
length of a vector v is denoted |v| or ‖v‖.
Properties of vector length:

|x| ≥ 0, |x| = 0 only if x = 0 (positivity)

|rx| = |r | |x| (homogeneity)

|x+ y| ≤ |x|+ |y| (triangle inequality)

x

y

x+ y



Beyond linearity: angle between vectors

Given nonzero vectors x and y, let A, B , and C be

points such that
−→
AB = x and

−→
AC = y. Then

∠BAC is called the angle between x and y.

The vectors x and y are called orthogonal (denoted
x ⊥ y) if the angle between them equals 90o.

A B

C

θ

y

x



x x+ y

y

Pythagorean Theorem:

x ⊥ y =⇒ |x+ y|2 = |x|2 + |y|2

3-dimensional Pythagorean Theorem:

If vectors x, y, z are pairwise orthogonal then

|x+ y + z|2 = |x|2 + |y|2 + |z|2



A B

C

θ

y

x

x− y

Law of cosines:

|x− y|2 = |x|2 + |y|2 − 2|x| |y| cos θ



Beyond linearity: dot product

The dot product of vectors x and y is

x · y = |x| |y| cos θ,
where θ is the angle between x and y.

The dot product is also called the scalar product.
Alternative notation: (x, y) or 〈x, y〉.
Nonzero vectors x and y are orthogonal if and only
if x · y = 0.

Relations between lengths and dot products:

• |x| = √
x · x

• |x · y| ≤ |x| |y|
• |x− y|2 = |x|2 + |y|2 − 2 x·y



Euclidean structure

Euclidean structure includes:

• length of a vector: |x|,
• angle between vectors: θ,
• dot product: x · y = |x| |y| cos θ.

A B

C

θ

y

x



Vectors: algebraic approach

An n-dimensional coordinate vector is an element of

R
n, i.e., an ordered n-tuple (x1, x2, . . . , xn) of real

numbers.

Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be

vectors, and r ∈ R be a scalar. Then, by definition,

a+ b = (a1 + b1, a2 + b2, . . . , an + bn),

ra = (ra1, ra2, . . . , ran),

0 = (0, 0, . . . , 0),

−b = (−b1,−b2, . . . ,−bn),

a− b = a+ (−b) = (a1 − b1, a2 − b2, . . . , an − bn).



Cartesian coordinates: geometric meets algebraic

(−3, 2)

(2, 1)

(−3, 2)

(2, 1)

Cartesian coordinates allow us to identify a line, a
plane, and space with R, R2, and R

3, respectively.

Once we specify an origin O, each point A is

associated a position vector
−→
OA. Conversely, every

vector has a unique representative with tail at O.



Length and distance

Definition. The length of a vector

v = (v1, v2, . . . , vn) ∈ R
n is

‖v‖ =
√

v 2
1 + v 2

2 + · · ·+ v 2
n .

The distance between vectors x and y is defined as
‖y − x‖.

Properties of length:

‖x‖ ≥ 0, ‖x‖ = 0 only if x = 0 (positivity)

‖rx‖ = |r | ‖x‖ (homogeneity)

‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)



Scalar product

Definition. The scalar product of vectors
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is

x · y = x1y1 + x2y2 + · · ·+ xnyn.

Alternative notation: (x, y) or 〈x, y〉.

Properties of scalar product:

x · x ≥ 0, x · x = 0 only if x = 0 (positivity)

x · y = y · x (symmetry)
(x+ y) · z = x · z+ y · z (distributive law)

(rx) · y = r(x · y) (homogeneity)

In particular, x · y is a bilinear function (i.e., it is
both a linear function of x and a linear function of y).



Angle

Cauchy-Schwarz inequality: |x · y| ≤ ‖x‖ ‖y‖.

By the Cauchy-Schwarz inequality, for any nonzero
vectors x, y ∈ R

n we have

cos θ =
x · y

‖x‖ ‖y‖ for a unique 0 ≤ θ ≤ π.

θ is called the angle between the vectors x and y.

The vectors x and y are said to be orthogonal
(denoted x ⊥ y) if x · y = 0 (i.e., if θ = 90o).



Problem. Find the angle θ between vectors
x = (2,−1) and y = (3, 1).

x · y = 5, ‖x‖ =
√
5, ‖y‖ =

√
10.

cos θ =
x · y

‖x‖ ‖y‖ =
5√

5
√
10

=
1√
2

=⇒ θ = 45o

Problem. Find the angle φ between vectors
v = (−2, 1, 3) and w = (4, 5, 1).

v · w = 0 =⇒ v ⊥ w =⇒ φ = 90o



Orthogonality

Definition 1. Vectors x, y ∈ R
n are said to be

orthogonal (denoted x ⊥ y) if x · y = 0.

Definition 2. A vector x ∈ R
n is said to be

orthogonal to a nonempty set Y ⊂ R
n (denoted

x ⊥ Y ) if x · y = 0 for any y ∈ Y .

Definition 3. Nonempty sets X ,Y ⊂ R
n are said

to be orthogonal (denoted X ⊥ Y ) if x · y = 0

for any x ∈ X and y ∈ Y .



Examples in R
3. • The line x = y = 0 is

orthogonal to the line y = z = 0.
Indeed, if v = (0, 0, z) and w = (x , 0, 0) then v · w = 0.

• The line x = y = 0 is orthogonal to the plane

z = 0.
Indeed, if v = (0, 0, z) and w = (x , y , 0) then v · w = 0.

• The line x = y = 0 is not orthogonal to the

plane z = 1.
The vector v = (0, 0, 1) belongs to both the line and the
plane, and v · v = 1 6= 0.

• The plane z = 0 is not orthogonal to the plane

y = 0.
The vector v = (1, 0, 0) belongs to both planes and
v · v = 1 6= 0.



Proposition 1 If X ,Y ∈ R
n are orthogonal sets

then either they are disjoint or X ∩ Y = {0}.
Proof: v ∈ X ∩ Y =⇒ v ⊥ v =⇒ v · v = 0 =⇒ v = 0.

Proposition 2 Let V be a subspace of Rn and S

be a spanning set for V . Then for any x ∈ R
n

x ⊥ S =⇒ x ⊥ V .

Proof: Any v ∈ V is represented as v = a1v1 + · · ·+ akvk ,
where vi ∈ S and ai ∈ R. If x ⊥ S then

x · v = a1(x · v1) + · · ·+ ak(x · vk) = 0 =⇒ x ⊥ v.

Example. The vector v = (1, 1, 1) is orthogonal to
the plane spanned by vectors w1 = (2,−3, 1) and

w2 = (0, 1,−1) (because v · w1 = v ·w2 = 0).



Orthogonal complement

Definition. Let S ⊂ R
n. The orthogonal

complement of S , denoted S⊥, is the set of all

vectors x ∈ R
n that are orthogonal to S . That is,

S⊥ is the largest subset of Rn orthogonal to S .

Theorem 1 S⊥ is a subspace of Rn.

Note that S ⊂ (S⊥)⊥, hence Span(S) ⊂ (S⊥)⊥.

Theorem 2 (S⊥)⊥ = Span(S). In particular, for
any subspace V we have (V⊥)⊥ = V .

Example. Consider a line L = {(x , 0, 0) | x ∈ R}
and a plane Π = {(0, y , z) | y , z ∈ R} in R

3.
Then L⊥ = Π and Π⊥ = L.



V

V
⊥

0


