MATH 323
Linear Algebra

Lecture 20:
Diagonalization (continued).
Euclidean structure in R".
Orthogonality.



Diagonalization

Theorem 1 Let L be a linear operator on a finite-dimensional
vector space V. Then the following conditions are equivalent:

e the matrix of L with respect to some basis is diagonal;
e there exists a basis for V' formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these
conditions.

Theorem 2 Let A be an nxn matrix. Then the following
conditions are equivalent:

e A is the matrix of a diagonalizable operator;

e A s similar to a diagonal matrix, i.e., it is represented as
A = UBU7!, where the matrix B is diagonal;

e there exists a basis for R” formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.



To diagonalize an nxn matrix A is to find a diagonal matrix B
and an invertible matrix U such that A= UBU™.

Suppose there exists a basis vy,...,v, for R” consisting of
eigenvectors of A. That is, Avy, = Axvi, where A\, € R.

Then A= UBU™!, where B = diag()\1,\2,...,A,) and U is
a transition matrix whose columns are vectors vi,Vvs,...,V,.
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Example. A= (0 1

). det(A— M) = (4— \)(1—\).

Eigenvalues: A\ =4, \, = 1.

. . 1 -1
Associated eigenvectors: v; = (0> Vo = ( 1).

Thus A= UBU™1, where

(1) 06 )



Suppose we have a problem that involves a square
matrix A in the context of matrix multiplication.

Also, suppose that the case when A is a diagonal
matrix is simple. Then the diagonalization may
help in solving this problem (or may not). Namely,
it may reduce the case of a diagonalizable matrix to
that of a diagonal one.

An example of such a problem is, given a square
matrix A, to find its power Ak
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Problem. Let A= (O 1

). Find A°.

We know that A = UBU™!, where

-(59) v-()

Then A® = UBU-'UBU-'UBU'UBU-'UBU™?
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Problem. Let A= <O 1

). Find A% (k > 1).

We know that A = UBU™!, where

4 0 1 —1
B_<O 1>' U_<O 1)'
Then

1 -1\ /4 0\ /11
k _ kp1—1 _
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Problem. Let A= <
such that C2 = A.

4 3 . .
0 1). Find a matrix C

We know that A = UBU~!, where

(8 o= Y)

Suppose that D? = B for some matrix D. Let C = UDU™!.
Then C? = UDU~'UDU! = UD?U~! = UBU™! = A.

(V4 0\ (20
WecantakeD—(0 vi) = \o 1)
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Initial value problem for a system of linear ODEs:

dx

= =4x + 3y,

& x(0) =1, y(0)=1.
dt =Y,

The system can be rewritten in vector form:

d
d—\t’:Av, where A:(g i’) v:(;).

Matrix A is diagonalizable: A = UBU~!, where

(19 0=

W- . .
Let w = (W1> be coordinates of the vector v relative to the
p)

basis v; = (1,0), v = (—1,1) of eigenvectors of A. Then
v=Uw = w=U"1v.



It follows that

dw d, _,dv 1 1
G v W
dw — Ay ,
Hence dw = Bw <— ddt '
dt % = Wh.

General solution: wy(t) = ce*t, wy(t) = cet, where ¢;, ¢ € R.

Initial condition:

e NN R)

Thus wi(t) = 2e*, wy(t) = e'. Then

() -o-¢ ) (407)



Vectors: geometric approach

B

A/

e A vector is represented by a directed segment.
e Directed segment is drawn as an arrow.

e Different arrows represent the same vector if
they are of the same length and direction.



Vectors: geometric approach

/@ denotes the vector represented by the arrow
with tip at B and tail at A.

_> .
AA is called the zero vector and denoted 0.



Vectors: geometric approach

%
If v = ,ﬁ then BA is called the negative vector of
v and denoted —v.



Linear structure: vector addition

Given vectors a and b, their sum a + b is defined
by the rule /ﬁqLR:R.

That is, choose points A, B, C so that /ﬁ =a
and BE=b. Then a+ b = AC.




The difference of the two vectors is defined as
a—b=a-+(-b).




Linear structure: scalar multiplication

Let v be a vector and r € R. By definition, rv is a
vector whose magnitude is |r| times the magnitude

of v. The direction of rv coincides with that of v if
r > 0. If r <0 then the directions of rv and v are

opposite.

3v

—2v




Beyond linearity: length of a vector

The length (or the magnitude) of a vector AB is
the length of the representing segment AB. The
length of a vector v is denoted |v| or ||v]].

Properties of vector length:

x| >0, |x] =0 onlyif x=20 (positivity)

|rx| = |r| |x] (homogeneity)

Ix+y| < |x|+ |y (triangle inequality)
y

>

X+y



Beyond linearity: angle between vectors

Given nonzero vectors x and y, let A, B, and C be
points such that /ﬁ = x and R =vy. Then
Z/BAC is called the angle between x and y.

The vectors x and y are called orthogonal (denoted
x L y) if the angle between them equals 90°.




Pythagorean Theorem:
xLy = |x+y[=[x>+]yf

3-dimensional Pythagorean Theorem:
If vectors x,y,z are pairwise orthogonal then
X +y+z” =[x+ |y* + 2]



Law of cosines:

x —y[2 = [x]*+ |y|* — 2|x| |y| cos b



Beyond linearity: dot product

The dot product of vectors x and y is
x -y = [x]|y| cosb,
where 0 is the angle between x and vy.

The dot product is also called the scalar product.
Alternative notation: (x,y) or (x,y).

Nonzero vectors x and y are orthogonal if and only
if x-y=0.
Relations between lengths and dot products:

X| = VXX

o [x-y| < x|y

o [x—y?=I[x]"+y]®—2xy



Euclidean structure

Euclidean structure includes:

e length of a vector: |x|,

e angle between vectors: @,

e dot product: x-y = |x||y| cosd.

C




Vectors: algebraic approach

An n-dimensional coordinate vector is an element of
R”, i.e., an ordered n-tuple (x1, %2, . . ., x,) of real
numbers.

Let a=(a1,ap,...,a,) and b= (by, by,..., b,) be
vectors, and r € R be a scalar. Then, by definition,
a+b=(a+b,ar+by,...,a,+ by),
ra=(ray,ray,...,ra,),

0=(0,0,...,0),

—b = (—by,—by,...,—by),
a—b=a+(-b)=(ai—b,a— by,...,a,— by).



Cartesian coordinates: geometric meets algebraic

Cartesian coordinates allow us to identify a line, a
plane, and space with R, R? and R3, respectively.

Once we specify an origin O, each point A is
associated a position vector OA. Conversely, every
vector has a unique representative with tail at O.



Length and distance

Definition. The length of a vector
v=(v,v,...,v,) ER"is

vl = vvi+vit -+

The distance between vectors x and y is defined as
ly — x|

Properties of length:
||| >0, ||x]]=0 onlyif x=0 (positivity)

[rx[| = [r[ [[x]] (homogeneity)
Ix+yl| < x| + ||yl (triangle inequality)



Scalar product
Definition. The scalar product of vectors
X = (x5,x0,...,X%,) and y = (y1,¥2,--.,¥n) IS
Xy =X1y1 +Xoy2 + -+ XpYn-

Alternative notation: (x,y) or (x,y).

Properties of scalar product:

x-x>0, x-x=0onlyif x=0 (positivity)
X-y=y-Xx (symmetry)
(x+y)-z=x-z+y-z (distributive law)
(rx)-y=r(x-y) (homogeneity)

In particular, x -y is a bilinear function (i.e., it is
both a linear function of x and a linear function of y).



Angle

Cauchy-Schwarz inequality:  |x - y| < ||x]| [|y]l-

By the Cauchy-Schwarz inequality, for any nonzero
vectors x,y € R” we have

cosf = for a unique 0 <6 <.

[ Iyl

0 is called the angle between the vectors x and y.

The vectors x and y are said to be orthogonal
(denoted x L y) if x-y =0 (i.e, if & =90°).



Problem. Find the angle 6 between vectors
x=(2,-1) and y = (3,1).

x-y =5, [x| =5 |ly|=v10.

: 1
ke ° L o

cosf = = = —
x|yl v5v10 V2

Problem. Find the angle ¢ between vectors
v=(-2,1,3) and w = (4,5,1).

vw=0 —= vlw = ¢=090°



Orthogonality

Definition 1. Vectors x,y € R" are said to be
orthogonal (denoted x | y) if [x-y=0.

Definition 2. A vector x € R” is said to be
orthogonal to a nonempty set Y C R” (denoted
xLY)if x-y=0 forany y €Y.

Definition 3. Nonempty sets X, Y C R" are said
to be orthogonal (denoted X L Y) if x-y=0
forany x € X and y € Y.



Examples in R3. e Theline x=y=0s
orthogonal to the line y = z = 0.
Indeed, if v=(0,0,z) and w = (x,0,0) then v-w = 0.

e Theline x =y =0 is orthogonal to the plane
z=0.
Indeed, if v=(0,0,z) and w = (x,y,0) then v-w =0.

e Theline x =y = 0 is not orthogonal to the
plane z = 1.

The vector v = (0,0, 1) belongs to both the line and the
plane, and v-v=1#0.

e The plane z = 0 is not orthogonal to the plane
y =0.
The vector v =(1,0,0) belongs to both planes and
v-v=1=#0.



Proposition 1 If X, Y € R” are orthogonal sets
then either they are disjoint or X N Y = {0}.

Proof: veXNY = vlv = v.-v=0 = v=0.

Proposition 2 Let V be a subspace of R” and S
be a spanning set for V. Then for any x € R”

xS = xL1V.

Proof: Any v € V s represented as v = a;vy + - - - + axVi,
where v; € S and a; ¢ R. If x L S then

X-v=ay(x-vy)+ - F+ax-v)=0 = x_Lv.

Example. The vector v = (1,1,1) is orthogonal to
the plane spanned by vectors w; = (2, —3,1) and
wy = (0,1,—1) (because v-w; =v-w, =0).



Orthogonal complement

Definition. Let S C R". The orthogonal
complement of S, denoted S+, is the set of all
vectors x € R” that are orthogonal to S. That is,
St is the largest subset of R” orthogonal to S.

Theorem 1 S is a subspace of R".
Note that S C (S1)+, hence Span(S) C (S1)*.

Theorem 2 (S)* = Span(S). In particular, for
any subspace V we have (V4)t = V.

Example. Consider a line L ={(x,0,0) | x € R}
and a plane M= {(0,y,z) | y,z € R} in R3.
Then [+ =T1 and N+ = L.






