Linear Algebra Lecture 24a:

MATH 323

Orthogonality in inner product spaces. The Gram-Schmidt process.

Norm

The notion of *norm* generalizes the notion of length of a vector in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\alpha: V \to \mathbb{R}$, usually denoted $\alpha(\mathbf{x}) = \|\mathbf{x}\|$, is called a **norm** on V if it has the following properties:

(i) $\|\mathbf{x}\| \ge 0$, $\|\mathbf{x}\| = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\|r\mathbf{x}\| = |r| \|\mathbf{x}\|$ for all $r \in \mathbb{R}$ (homogeneity) (iii) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality)

A **normed vector space** is a vector space endowed with a norm. The norm defines a distance function on the normed vector space: $dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$.

Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

•
$$\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|).$$

• $\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}, \ p \ge 1.$

Examples. $V = C[a, b], f : [a, b] \to \mathbb{R}.$

$$\bullet \quad \|f\|_{\infty} = \max_{a \le x \le h} |f(x)|.$$

•
$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}, \ p \ge 1.$$

Inner product

The notion of *inner product* generalizes the notion of dot product of vectors in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\beta: V \times V \to \mathbb{R}$, usually denoted $\beta(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$, is called an **inner product** on V if it is positive, symmetric, and bilinear. That is, if (i) $\langle \mathbf{x}, \mathbf{x} \rangle > 0$, $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (symmetry) (iii) $\langle r\mathbf{x}, \mathbf{y} \rangle = r \langle \mathbf{x}, \mathbf{y} \rangle$ (homogeneity) (iv) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ (distributive law)

An **inner product space** is a vector space endowed with an inner product.

Examples. $V = \mathbb{R}^n$.

$$\bullet \quad \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n.$$

$$ullet \langle \mathbf{x}, \mathbf{y}
angle = d_1 x_1 y_1 + d_2 x_2 y_2 + \cdots + d_n x_n y_n,$$
 where $d_1, d_2, \ldots, d_n > 0.$

Examples. V = C[a, b].

•
$$\langle f,g\rangle = \int_a^b f(x)g(x) dx$$
.

• $\langle f,g\rangle = \int^{D} f(x)g(x)w(x) dx$,

where w is bounded, piecewise continuous, and w > 0 everywhere on [a, b].

Norms induced by inner products

Theorem Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space V. Then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ is a norm.

Examples. • The length of a vector in
$$\mathbb{R}^n$$
, $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$,

is the norm induced by the dot product

$$\mathbf{x}\cdot\mathbf{y}=x_1y_1+x_2y_2+\cdots+x_ny_n.$$

• The norm $||f||_2 = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}$ on the vector space C[a,b] is induced by the inner product $\langle f,g\rangle = \int_a^b f(x)g(x) dx$.

Orthogonality

Let V be an inner product space with an inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\| \cdot \|$. We say that vectors \mathbf{x} and \mathbf{y} are **orthogonal** if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

Definition. A nonempty set $S \subset V$ of nonzero vectors is called an **orthogonal set** if all vectors in S are mutually orthogonal. That is, $\mathbf{0} \notin S$ and $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ for any $\mathbf{x}, \mathbf{y} \in S$, $\mathbf{x} \neq \mathbf{y}$.

An orthogonal set $S \subset V$ is called **orthonormal** if $\|\mathbf{x}\| = 1$ for any $\mathbf{x} \in S$.

Example. The standard basis $\mathbf{e}_1 = (1, 0, 0, \dots, 0)$, $\mathbf{e}_2 = (0, 1, 0, \dots, 0)$, ..., $\mathbf{e}_n = (0, 0, 0, \dots, 1)$ in \mathbb{R}^n . It is an orthonormal set.

Example

•
$$V = C[-\pi, \pi], \langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx.$$

$$f_1(x) = \sin x$$
, $f_2(x) = \sin 2x$, ..., $f_n(x) = \sin nx$, ...

$$\langle f_m, f_n \rangle = \int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx = \begin{cases} \pi & \text{if } m = n, \\ 0 & \text{if } m \neq n. \end{cases}$$

Thus the set $\{f_1, f_2, f_3, \dots\}$ is orthogonal but not orthonormal.

It is orthonormal with respect to a scaled inner product $\mathbf{1}^{a\pi}$

$$\langle\!\langle f,g\rangle\!\rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x) dx.$$

${\bf Orthogonality} \implies {\bf linear \ independence}$

Theorem Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are nonzero vectors that form an orthogonal set. Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

Proof: Suppose $t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + \cdots + t_k\mathbf{v}_k = \mathbf{0}$ for some $t_1, t_2, \dots, t_k \in \mathbb{R}$.

Then for any index $1 \le i \le k$ we have

$$\langle t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + \cdots + t_k \mathbf{v}_k, \mathbf{v}_i \rangle = \langle \mathbf{0}, \mathbf{v}_i \rangle = 0.$$

$$\implies t_1 \langle \mathbf{v}_1, \mathbf{v}_i \rangle + t_2 \langle \mathbf{v}_2, \mathbf{v}_i \rangle + \cdots + t_k \langle \mathbf{v}_k, \mathbf{v}_i \rangle = 0$$

By orthogonality, $t_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle = 0 \implies t_i = 0$.

Orthonormal bases

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be an orthonormal basis for an inner product space V.

Theorem Let $\mathbf{x} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_n \mathbf{v}_n$ and $\mathbf{y} = y_1 \mathbf{v}_1 + y_2 \mathbf{v}_2 + \dots + y_n \mathbf{v}_n$, where $x_i, y_j \in \mathbb{R}$. Then (i) $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$, (ii) $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$.

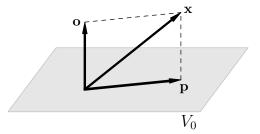
Proof: (ii) follows from (i) when y = x.

$$\langle \mathbf{x}, \mathbf{y} \rangle = \left\langle \sum_{i=1}^{n} x_{i} \mathbf{v}_{i}, \sum_{j=1}^{n} y_{j} \mathbf{v}_{j} \right\rangle = \sum_{i=1}^{n} x_{i} \left\langle \mathbf{v}_{i}, \sum_{j=1}^{n} y_{j} \mathbf{v}_{j} \right\rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle = \sum_{i=1}^{n} x_{i} y_{i}.$$

Orthogonal projection

Theorem Let V be an inner product space and V_0 be a finite-dimensional subspace of V. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V_0$ and $\mathbf{o} \perp V_0$.

The component \mathbf{p} is called the **orthogonal projection** of the vector \mathbf{x} onto the subspace V_0 .



The projection \mathbf{p} is closer to \mathbf{x} than any other vector in V_0 . Hence the distance from \mathbf{x} to V_0 is $\|\mathbf{x} - \mathbf{p}\| = \|\mathbf{o}\|$.

Let V be an inner product space. Let \mathbf{p} be the orthogonal projection of a vector $\mathbf{x} \in V$ onto a finite-dimensional subspace V_0 .

If V_0 is a one-dimensional subspace spanned by a vector \mathbf{v} then $\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}$.

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V_0 then

$$\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n.$$

Indeed, $\langle \mathbf{p}, \mathbf{v}_i \rangle = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_i, \mathbf{v}_i \rangle} \langle \mathbf{v}_j, \mathbf{v}_i \rangle = \frac{\langle \mathbf{x}, \mathbf{v}_i \rangle}{\langle \mathbf{v}_i, \mathbf{v}_i \rangle} \langle \mathbf{v}_i, \mathbf{v}_i \rangle = \langle \mathbf{x}, \mathbf{v}_i \rangle$ $\implies \langle \mathbf{x} - \mathbf{p}, \mathbf{v}_i \rangle = 0 \implies \mathbf{x} - \mathbf{p} \perp \mathbf{v}_i \implies \mathbf{x} - \mathbf{p} \perp V_0.$

Coordinates relative to an orthogonal basis

Theorem If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for an inner product space V, then

$$\mathbf{x} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n$$

for any vector $\mathbf{x} \in V$.

Corollary If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthonormal basis for an inner product space V, then

$$\mathbf{x}=\langle \mathbf{x},\mathbf{v}_1
angle \mathbf{v}_1+\langle \mathbf{x},\mathbf{v}_2
angle \mathbf{v}_2+\cdots+\langle \mathbf{x},\mathbf{v}_n
angle \mathbf{v}_n$$
 for any vector $\mathbf{x}\in V$.

The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product. Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for V. Let

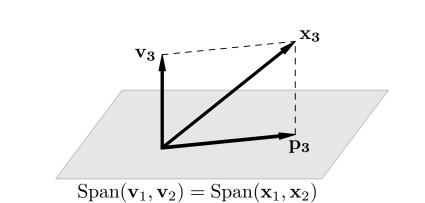
$$\mathbf{v}_1 = \mathbf{x}_1$$
,

$$\mathbf{v}_2 = \mathbf{x}_2 - rac{\langle \mathbf{x}_2, \mathbf{v}_1
angle}{\langle \mathbf{v}_1, \mathbf{v}_1
angle} \mathbf{v}_1$$
,

$$\mathbf{v}_3 = \mathbf{x}_3 - \frac{\langle \mathbf{x}_3, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{x}_3, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2,$$

$$\mathbf{v}_n = \mathbf{x}_n - \frac{\langle \mathbf{x}_n, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \cdots - \frac{\langle \mathbf{x}_n, \mathbf{v}_{n-1} \rangle}{\langle \mathbf{v}_{n-1}, \mathbf{v}_{n-1} \rangle} \mathbf{v}_{n-1}.$$

Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V.



Any basis $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ Orthogonal basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$

Properties of the Gram-Schmidt process:

- $\mathbf{v}_k = \mathbf{x}_k (\alpha_1 \mathbf{x}_1 + \dots + \alpha_{k-1} \mathbf{x}_{k-1}), 1 \le k \le n;$
- the span of $\mathbf{v}_1, \dots, \mathbf{v}_k$ is the same as the span of $\mathbf{x}_1, \dots, \mathbf{x}_k$;
 - \mathbf{v}_k is orthogonal to $\mathbf{x}_1, \dots, \mathbf{x}_{k-1}$;
- $\mathbf{v}_k = \mathbf{x}_k \mathbf{p}_k$, where \mathbf{p}_k is the orthogonal projection of the vector \mathbf{x}_k on the subspace spanned by $\mathbf{x}_1, \dots, \mathbf{x}_{k-1}$;
- $\|\mathbf{v}_k\|$ is the distance from \mathbf{x}_k to the subspace spanned by $\mathbf{x}_1, \dots, \mathbf{x}_{k-1}$.

Normalization

Let V be a vector space with an inner product. Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V.

Let
$$\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$$
, $\mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$,..., $\mathbf{w}_n = \frac{\mathbf{v}_n}{\|\mathbf{v}_n\|}$.

Then $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n$ is an orthonormal basis for V.

Theorem Any finite-dimensional vector space with an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with an inner product may or may not have an orthonormal basis.

Orthogonalization / Normalization

An alternative form of the Gram-Schmidt process combines orthogonalization with normalization.

Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for an inner product space V. Let

$$\mathbf{v}_1 = \mathbf{x}_1$$
, $\mathbf{w}_1 = rac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$,

$$\mathbf{v}_2 = \mathbf{x}_2 - \langle \mathbf{x}_2, \mathbf{w}_1 \rangle \mathbf{w}_1, \quad \mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|},$$

$$\mathbf{v}_3 = \mathbf{x}_3 - \langle \mathbf{x}_3, \mathbf{w}_1 \rangle \mathbf{w}_1 - \langle \mathbf{x}_3, \mathbf{w}_2 \rangle \mathbf{w}_2, \quad \mathbf{w}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|},$$

$$\mathbf{v}_n = \mathbf{x}_n - \langle \mathbf{x}_n, \mathbf{w}_1 \rangle \mathbf{w}_1 - \cdots - \langle \mathbf{x}_n, \mathbf{w}_{n-1} \rangle \mathbf{w}_{n-1},$$
 $\mathbf{w}_n = \frac{\mathbf{v}_n}{\|\mathbf{v}_n\|}.$

Then $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n$ is an orthonormal basis for V.

Problem. Let Π be the plane spanned by vectors $\mathbf{x}_1 = (1, 1, 0)$ and $\mathbf{x}_2 = (0, 1, 1)$.

(i) Find the orthogonal projection of the vector $\mathbf{y} = (4,0,-1)$ onto the plane Π . (ii) Find the distance from \mathbf{y} to Π .

First we apply the Gram-Schmidt process to the basis ${\bf x}_1,{\bf x}_2$: ${\bf v}_1={\bf x}_1=(1,1,0)$,

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 = (0, 1, 1) - \frac{1}{2} (1, 1, 0) = (-1/2, 1/2, 1).$$
Now that $\mathbf{v}_1, \mathbf{v}_2$ is an orthogonal basis for Π , the orthogonal

Now that $\textbf{v}_1,\textbf{v}_2$ is an orthogonal basis for $\Pi,$ the orthogonal projection of y onto Π is

$$\mathbf{p} = \frac{\langle \mathbf{y}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{y}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 = \frac{4}{2} (1, 1, 0) + \frac{-3}{3/2} (-1/2, 1/2, 1)$$
$$= (2, 2, 0) + (1, -1, -2) = (3, 1, -2).$$

The distance from \mathbf{y} to Π is $\|\mathbf{y} - \mathbf{p}\| = \|(1, -1, 1)\| = \sqrt{3}$.

Problem. Approximate the function $f(x) = e^x$ on the interval [-1,1] by a quadratic polynomial.

The best approximation would be a polynomial p(x) that minimizes the distance relative to the uniform norm:

$$||f - p||_{\infty} = \max_{|x| \le 1} |f(x) - p(x)|.$$

However there is no analytic way to find such a polynomial. Instead, one can find a "least squares" approximation that minimizes the integral norm

$$||f-p||_2 = \left(\int_{-1}^1 |f(x)-p(x)|^2 dx\right)^{1/2}.$$

The norm $\|\cdot\|_2$ is induced by the inner product

$$\langle g,h\rangle=\int_{-1}^1g(x)h(x)\,dx.$$

Therefore $||f - p||_2$ is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_3 of quadratic polynomials.

We should apply the Gram-Schmidt process to the polynomials $1, x, x^2$, which form a basis for \mathcal{P}_3 . This would yield an orthogonal basis p_0, p_1, p_2 . Then

$$p(x) = \frac{\langle f, p_0 \rangle}{\langle p_0, p_0 \rangle} p_0(x) + \frac{\langle f, p_1 \rangle}{\langle p_1, p_1 \rangle} p_1(x) + \frac{\langle f, p_2 \rangle}{\langle p_2, p_2 \rangle} p_2(x).$$