MATH 323
 Linear Algebra
 Lecture 20:

Euclidean structure in \mathbb{R}^{n}. Orthogonal complement.

Vectors: geometric approach

- A vector is represented by a directed segment.
- Directed segment is drawn as an arrow.
- Different arrows represent the same vector if they are of the same length and direction.

Vectors: geometric approach

$\overrightarrow{A B}$ denotes the vector represented by the arrow with tip at B and tail at A.
$\overrightarrow{A A}$ is called the zero vector and denoted 0 .

Vectors: geometric approach

If $\mathbf{v}=\overrightarrow{A B}$ then $\overrightarrow{B A}$ is called the negative vector of \mathbf{v} and denoted $-\mathbf{v}$.

Linear structure: vector addition

Given vectors \mathbf{a} and \mathbf{b}, their sum $\mathbf{a}+\mathbf{b}$ is defined by the rule $\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}$.
That is, choose points A, B, C so that $\overrightarrow{A B}=\mathbf{a}$ and $\overrightarrow{B C}=\mathbf{b}$. Then $\mathbf{a}+\mathbf{b}=\overrightarrow{A C}$.

The difference of the two vectors is defined as $\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})$.

Linear structure: scalar multiplication

Let \mathbf{v} be a vector and $r \in \mathbb{R}$. By definition, $r \mathbf{v}$ is a vector whose magnitude is $|r|$ times the magnitude of \mathbf{v}. The direction of $r \mathbf{v}$ coincides with that of \mathbf{v} if $r>0$. If $r<0$ then the directions of $r \mathbf{v}$ and \mathbf{v} are opposite.

$3 v$
$-2 v$

Beyond linearity: length of a vector

The length (or the magnitude) of a vector $\overrightarrow{A B}$ is the length of the representing segment $A B$. The length of a vector \mathbf{v} is denoted $|\mathbf{v}|$ or $\|\mathbf{v}\|$.

Properties of vector length:

$$
\begin{array}{lr}
|\mathbf{x}| \geq 0, \quad|\mathbf{x}|=0 \text { only if } \mathbf{x}=\mathbf{0} & \text { (positivity) } \\
|r \mathbf{x}|=|r||\mathbf{x}| & \text { (homogeneity) } \\
|\mathbf{x}+\mathbf{y}| \leq|\mathbf{x}|+|\mathbf{y}| & \text { (triangle inequality) }
\end{array}
$$

Beyond linearity: angle between vectors

Given nonzero vectors \mathbf{x} and \mathbf{y}, let A, B, and C be points such that $\overrightarrow{A B}=\mathbf{x}$ and $\overrightarrow{A C}=\mathbf{y}$. Then $\angle B A C$ is called the angle between \mathbf{x} and \mathbf{y}.
The vectors \mathbf{x} and \mathbf{y} are called orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if the angle between them equals 90°.

Pythagorean Theorem:

$$
\mathbf{x} \perp \mathbf{y} \Longrightarrow|\mathbf{x}+\mathbf{y}|^{2}=|\mathbf{x}|^{2}+|\mathbf{y}|^{2}
$$

3-dimensional Pythagorean Theorem:
If vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are pairwise orthogonal then

$$
|x+\mathbf{y}+\mathbf{z}|^{2}=|\mathbf{x}|^{2}+|\mathbf{y}|^{2}+|z|^{2}
$$

Law of cosines:

$$
|\mathbf{x}-\mathbf{y}|^{2}=|\mathbf{x}|^{2}+|\mathbf{y}|^{2}-2|\mathbf{x}||\mathbf{y}| \cos \theta
$$

Beyond linearity: dot product

The dot product of vectors \mathbf{x} and \mathbf{y} is

$$
\mathbf{x} \cdot \mathbf{y}=|\mathbf{x}||\mathbf{y}| \cos \theta
$$

where θ is the angle between \mathbf{x} and \mathbf{y}.
The dot product is also called the scalar product. Alternative notation: (\mathbf{x}, \mathbf{y}) or $\langle\mathbf{x}, \mathbf{y}\rangle$.
Nonzero vectors \mathbf{x} and \mathbf{y} are orthogonal if and only if $\mathbf{x} \cdot \mathbf{y}=0$.

Relations between lengths and dot products:

- $|\mathbf{x}|=\sqrt{x \cdot x}$
- $|x \cdot y| \leq|x||y|$
- $|\mathbf{x}-\mathbf{y}|^{2}=|\mathbf{x}|^{2}+|\mathbf{y}|^{2}-2 \mathbf{x} \cdot \mathbf{y}$

Euclidean structure

Euclidean structure includes:

- length of a vector: $\mid \mathbf{x}$,
- angle between vectors: θ,
- dot product: $\mathbf{x} \cdot \mathbf{y}=|\mathbf{x}||\mathbf{y}| \cos \theta$.

Vectors: algebraic approach

An n-dimensional coordinate vector is an element of \mathbb{R}^{n}, i.e., an ordered n-tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of real numbers.

Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ be vectors, and $r \in \mathbb{R}$ be a scalar. Then, by definition, $\mathbf{a}+\mathbf{b}=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)$, $r \mathbf{a}=\left(r a_{1}, r a_{2}, \ldots, r a_{n}\right)$,
$\mathbf{0}=(0,0, \ldots, 0)$,
$-\mathbf{b}=\left(-b_{1},-b_{2}, \ldots,-b_{n}\right)$,
$\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})=\left(a_{1}-b_{1}, a_{2}-b_{2}, \ldots, a_{n}-b_{n}\right)$.

Cartesian coordinates: geometric meets algebraic

Cartesian coordinates allow us to identify a line, a plane, and space with $\mathbb{R}, \mathbb{R}^{2}$, and \mathbb{R}^{3}, respectively. Once we specify an origin O, each point A is associated a position vector $\overrightarrow{O A}$. Conversely, every vector has a unique representative with tail at O.

Length and distance

Definition. The length of a vector
$\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$ is

$$
\|\mathbf{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

The distance between vectors \mathbf{x} and \mathbf{y} is defined as $\|\mathbf{y}-\mathbf{x}\|$.

Properties of length:

$$
\begin{array}{lr}
\|\mathbf{x}\| \geq 0, \quad\|\mathbf{x}\|=0 \text { only if } \mathbf{x}=\mathbf{0} & \text { (positivity) } \\
\|r \mathbf{x}\|=|r|\|\mathbf{x}\| & \text { (homogeneity) } \\
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| & \text { (triangle inequality) }
\end{array}
$$

Scalar product

Definition. The scalar product of vectors
$\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} .
$$

Alternative notation: (\mathbf{x}, \mathbf{y}) or $\langle\mathbf{x}, \mathbf{y}\rangle$.
Properties of scalar product:
$\mathbf{x} \cdot \mathbf{x} \geq 0, \mathbf{x} \cdot \mathbf{x}=0$ only if $\mathbf{x}=\mathbf{0}$
$\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$
$(\mathbf{x}+\mathbf{y}) \cdot \mathbf{z}=\mathbf{x} \cdot \mathbf{z}+\mathbf{y} \cdot \mathbf{z}$
$(r \mathbf{x}) \cdot \mathbf{y}=r(\mathbf{x} \cdot \mathbf{y})$
(positivity)
(symmetry)
(distributive law)
(homogeneity)
In particular, $\mathbf{x} \cdot \mathbf{y}$ is a bilinear function (i.e., it is both a linear function of \mathbf{x} and a linear function of \mathbf{y}).

Angle

Cauchy-Schwarz inequality: $\quad|\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.
By the Cauchy-Schwarz inequality, for any nonzero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ we have

$$
\cos \theta=\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|} \text { for a unique } 0 \leq \theta \leq \pi
$$

θ is called the angle between the vectors \mathbf{x} and \mathbf{y}.
The vectors \mathbf{x} and \mathbf{y} are said to be orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x} \cdot \mathbf{y}=0$ (i.e., if $\theta=90^{\circ}$).

Problem. Find the angle θ between vectors $\mathbf{x}=(2,-1)$ and $\mathbf{y}=(3,1)$.
$\mathbf{x} \cdot \mathbf{y}=5,\|x\|=\sqrt{5},\|y\|=\sqrt{10}$.
$\cos \theta=\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}=\frac{5}{\sqrt{5} \sqrt{10}}=\frac{1}{\sqrt{2}} \Longrightarrow \theta=45^{\circ}$

Problem. Find the angle ϕ between vectors
$\mathbf{v}=(-2,1,3)$ and $\mathbf{w}=(4,5,1)$.
$\mathbf{v} \cdot \mathbf{w}=0 \Longrightarrow \mathbf{v} \perp \mathbf{w} \Longrightarrow \phi=90^{\circ}$

Orthogonality

Definition 1. Vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ are said to be orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x \cdot y = 0}$.

Definition 2. A vector $\mathrm{x} \in \mathbb{R}^{n}$ is said to be orthogonal to a nonempty set $Y \subset \mathbb{R}^{n}$ (denoted $\mathbf{x} \perp Y)$ if $\mathbf{x} \cdot \mathbf{y}=0$ for any $\mathbf{y} \in Y$.

Definition 3. Nonempty sets $X, Y \subset \mathbb{R}^{n}$ are said to be orthogonal (denoted $X \perp Y$) if $\mathbf{x} \cdot \mathbf{y}=0$ for any $\mathbf{x} \in X$ and $\mathbf{y} \in Y$.

Examples in \mathbb{R}^{3}.

- The line $x=y=0$ is orthogonal to the line $y=z=0$. Indeed, if $\mathbf{v}=(0,0, z)$ and $\mathbf{w}=(x, 0,0)$ then $\mathbf{v} \cdot \mathbf{w}=0$.
- The line $x=y=0$ is orthogonal to the plane $z=0$.
Indeed, if $\mathbf{v}=(0,0, z)$ and $\mathbf{w}=(x, y, 0)$ then $\mathbf{v} \cdot \mathbf{w}=0$.
- The line $x=y=0$ is not orthogonal to the plane $z=1$.
The vector $\mathbf{v}=(0,0,1)$ belongs to both the line and the plane, and $\mathbf{v} \cdot \mathbf{v}=1 \neq 0$.
- The plane $z=0$ is not orthogonal to the plane $y=0$.
The vector $\mathbf{v}=(1,0,0)$ belongs to both planes and $\mathbf{v} \cdot \mathbf{v}=1 \neq 0$.

Proposition 1 If $X, Y \in \mathbb{R}^{n}$ are orthogonal sets then either they are disjoint or $X \cap Y=\{\mathbf{0}\}$.

Proof: $\mathbf{v} \in X \cap Y \Longrightarrow \mathbf{v} \perp \mathbf{v} \Longrightarrow \mathbf{v} \cdot \mathbf{v}=0 \Longrightarrow \mathbf{v}=\mathbf{0}$.
Proposition 2 Let V be a subspace of \mathbb{R}^{n} and S be a spanning set for V. Then for any $\mathbf{x} \in \mathbb{R}^{n}$

$$
\mathbf{x} \perp S \Longrightarrow \mathbf{x} \perp V
$$

Proof: Any $\mathbf{v} \in V$ is represented as $\mathbf{v}=a_{1} \mathbf{v}_{1}+\cdots+a_{k} \mathbf{v}_{k}$, where $\mathbf{v}_{i} \in S$ and $a_{i} \in \mathbb{R}$. If $\mathbf{x} \perp S$ then

$$
\mathbf{x} \cdot \mathbf{v}=a_{1}\left(\mathbf{x} \cdot \mathbf{v}_{1}\right)+\cdots+a_{k}\left(\mathbf{x} \cdot \mathbf{v}_{k}\right)=0 \Longrightarrow \mathbf{x} \perp \mathbf{v} .
$$

Example. The vector $\mathbf{v}=(1,1,1)$ is orthogonal to the plane spanned by vectors $\mathbf{w}_{1}=(2,-3,1)$ and $\mathbf{w}_{2}=(0,1,-1)$ (because $\mathbf{v} \cdot \mathbf{w}_{1}=\mathbf{v} \cdot \mathbf{w}_{2}=0$).

Orthogonal complement

Definition. Let $S \subset \mathbb{R}^{n}$. The orthogonal complement of S, denoted S^{\perp}, is the set of all vectors $\mathbf{x} \in \mathbb{R}^{n}$ that are orthogonal to S. That is, S^{\perp} is the largest subset of \mathbb{R}^{n} orthogonal to S.

Theorem $1 S^{\perp}$ is a subspace of \mathbb{R}^{n}.
Note that $S \subset\left(S^{\perp}\right)^{\perp}$, hence $\operatorname{Span}(S) \subset\left(S^{\perp}\right)^{\perp}$.
Theorem $2\left(S^{\perp}\right)^{\perp}=\operatorname{Span}(S)$. In particular, for any subspace V we have $\left(V^{\perp}\right)^{\perp}=V$.

Example. Consider a line $L=\{(x, 0,0) \mid x \in \mathbb{R}\}$ and a plane $\Pi=\{(0, y, z) \mid y, z \in \mathbb{R}\}$ in \mathbb{R}^{3}.
Then $L^{\perp}=\Pi$ and $\Pi^{\perp}=L$.

Fundamental subspaces

Definition. Given an $m \times n$ matrix A, let

$$
\begin{aligned}
& N(A)=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\} \\
& R(A)=\left\{\mathbf{b} \in \mathbb{R}^{m} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

$R(A)$ is the range of a linear mapping $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, $L(\mathbf{x})=A \mathbf{x} . \quad N(A)$ is the kernel of L.
Also, $N(A)$ is the nullspace of the matrix A while $R(A)$ is the column space of A. The row space of A is $R\left(A^{T}\right)$.
The subspaces $N(A), R\left(A^{T}\right) \subset \mathbb{R}^{n}$ and $R(A), N\left(A^{T}\right) \subset \mathbb{R}^{m}$ are fundamental subspaces associated to the matrix A.

Theorem $N(A)=R\left(A^{T}\right)^{\perp}, \quad N\left(A^{T}\right)=R(A)^{\perp}$. That is, the nullspace of a matrix is the orthogonal complement of its row space.
Proof: The equality $A \mathbf{x}=\mathbf{0}$ means that the vector \mathbf{x} is orthogonal to rows of the matrix A. Therefore $N(A)=S^{\perp}$, where S is the set of rows of A. It remains to note that $S^{\perp}=\operatorname{Span}(S)^{\perp}=R\left(A^{T}\right)^{\perp}$.

Corollary Let V be a subspace of \mathbb{R}^{n}. Then $\operatorname{dim} V+\operatorname{dim} V^{\perp}=n$.
Proof: Pick a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ for V. Let A be the $k \times n$ matrix whose rows are vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$. Then $V=R\left(A^{T}\right)$, hence $V^{\perp}=N(A)$. Consequently, $\operatorname{dim} V$ and $\operatorname{dim} V^{\perp}$ are the rank and nullity of A. Therefore $\operatorname{dim} V+\operatorname{dim} V^{\perp}$ equals the number of columns of A, which is n.

Problem. Let V be the plane spanned by vectors $\mathbf{v}_{1}=(1,1,0)$ and $\mathbf{v}_{2}=(0,1,1)$. Find V^{\perp}.

The orthogonal complement to V is the same as the orthogonal complement of the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. A vector $\mathbf{u}=(x, y, z)$ belongs to the latter if and only if

$$
\left\{\begin{array} { l }
{ \mathbf { u } \cdot \mathbf { v } _ { 1 } = 0 } \\
{ \mathbf { u } \cdot \mathbf { v } _ { 2 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x+y=0 \\
y+z=0
\end{array}\right.\right.
$$

Alternatively, the subspace V is the row space of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right),
$$

hence V^{\perp} is the nullspace of A.
The general solution of the system (or, equivalently, the general element of the nullspace of A) is $(t,-t, t)$ $=t(1,-1,1), t \in \mathbb{R}$. Thus V^{\perp} is the straight line spanned by the vector $(1,-1,1)$.

