Sample problems for the final exam: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.) Suppose $E_{1}, E_{2}, E_{3}, \ldots$ are countable sets. Prove that their union $E_{1} \cup E_{2} \cup E_{3} \cup \ldots$ is also a countable set.

First we are going to show that the set $\mathbb{N} \times \mathbb{N}$ is countable. Consider a relation \prec on the set $\mathbb{N} \times \mathbb{N}$ such that $\left(n_{1}, n_{2}\right) \prec\left(m_{1}, m_{2}\right)$ if and only if either $n_{1}+n_{2}<m_{1}+m_{2}$ or else $n_{1}+n_{2}=m_{1}+m_{2}$ and $n_{1}<m_{1}$. It is easy to see that \prec is a strict linear order. Moreover, for any pair (m_{1}, m_{2}) $\in \mathbb{N} \times \mathbb{N}$ there are only finitely many pairs $\left(n_{1}, n_{2}\right)$ such that $\left(n_{1}, n_{2}\right) \prec\left(m_{1}, m_{2}\right)$. It follows that \prec is a well-ordering. Now we define inductively a mapping $F: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ such that for any $n \in \mathbb{N}$ the pair $F(n)$ is the least (relative to \prec) pair different from $F(k)$ for all natural numbers $k<n$. It follows from the construction that F is bijective. Thus $\mathbb{N} \times \mathbb{N}$ is a countable set. By the way, the inverse mapping F^{-1} can be given explicitly by

$$
F^{-1}\left(n_{1}, n_{2}\right)=\frac{\left(n_{1}+n_{2}-2\right)\left(n_{1}+n_{2}-1\right)}{2}+n_{1}, \quad n_{1}, n_{2} \in \mathbb{N} \text {. }
$$

Now suppose that E_{1}, E_{2}, \ldots are countable sets. Then for any $n \in \mathbb{N}$ there exists a bijective mapping $f_{n}: \mathbb{N} \rightarrow E_{n}$. Let us define a map $g: \mathbb{N} \times \mathbb{N} \rightarrow E_{1} \cup E_{2} \cup \ldots$ by $g\left(n_{1}, n_{2}\right)=f_{n_{1}}\left(n_{2}\right)$. Obviously, g is onto. Since the set $\mathbb{N} \times \mathbb{N}$ is countable, there exists a sequence $p_{1}, p_{2}, p_{3}, \ldots$ that is a complete list of its elements. Then the sequence $g\left(p_{1}\right), g\left(p_{2}\right), g\left(p_{3}\right), \ldots$ contains all elements of the union $E_{1} \cup E_{2} \cup E_{3} \cup \ldots$ Although the latter sequence may include repetitions, we can choose a subsequence $\left\{g\left(p_{n_{k}}\right)\right\}$ in which every element of the union appears exactly once. Note that the subsequence is infinite since each of the sets E_{1}, E_{2}, \ldots is infinite. Then the map h of \mathbb{N} defined by $h(k)=g\left(p_{n_{k}}\right), k=1,2, \ldots$, is a bijection onto $E_{1} \cup E_{2} \cup E_{3} \cup \ldots$

Problem 2 (20 pts.) Find the following limits:
(i) $\lim _{x \rightarrow 0} \log \frac{1}{1+\cot \left(x^{2}\right)}$,
(ii) $\lim _{x \rightarrow 64} \frac{\sqrt{x}-8}{\sqrt[3]{x}-4}$,
(iii) $\lim _{n \rightarrow \infty}\left(1+\frac{c}{n}\right)^{n}$, where $c \in \mathbb{R}$.

The function

$$
f(x)=\log \frac{1}{1+\cot \left(x^{2}\right)}
$$

can be represented as the composition of 4 functions: $f_{1}(x)=x^{2}, f_{2}(y)=\cot y, f_{3}(z)=(1+z)^{-1}$, and $f_{4}(u)=\log u$. Since the function f_{1} is continuous, we have $\lim _{x \rightarrow 0} f_{1}(x)=f_{1}(0)=0$. Moreover, $f_{1}(x)>0$ for $x \neq 0$. Since $\lim _{y \rightarrow 0+} \cot y=+\infty$, it follows that $f_{2}\left(f_{1}(x)\right) \rightarrow+\infty$ as $x \rightarrow 0$. Further, $f_{3}(z) \rightarrow 0+$ as $z \rightarrow+\infty$ and $f_{4}(u) \rightarrow-\infty$ as $u \rightarrow 0+$. Finally, $f(x)=f_{4}\left(f_{3}\left(f_{2}\left(f_{1}(x)\right)\right)\right) \rightarrow-\infty$ as $x \rightarrow 0$.

To find the second limit, consider a function $u(x)=x^{1 / 6}$ defined on $(0, \infty)$. Since this function is continuous at 64 and $u(64)=2$, we obtain

$$
\begin{aligned}
\lim _{x \rightarrow 64} \frac{\sqrt{x}-8}{\sqrt[3]{x}-4}= & \lim _{x \rightarrow 64} \frac{(u(x))^{3}-8}{(u(x))^{2}-4}=\lim _{y \rightarrow 2} \frac{y^{3}-8}{y^{2}-4}=\lim _{y \rightarrow 2} \frac{(y-2)\left(y^{2}+2 y+4\right)}{(y-2)(y+2)} \\
& =\lim _{y \rightarrow 2} \frac{y^{2}+2 y+4}{y+2}=\left.\frac{y^{2}+2 y+4}{y+2}\right|_{y=2}=3 .
\end{aligned}
$$

Given $c \in \mathbb{R}$, let $a_{n}=(1+c / n)^{n}$ for all $n \in \mathbb{N}$. For n large enough, we have $1+c / n>0$ so that $a_{n}>0$. Then

$$
\log a_{n}=\log \left(1+\frac{c}{n}\right)^{n}=n \log \left(1+\frac{c}{n}\right)=\left.\frac{\log (1+c x)}{x}\right|_{x=1 / n} .
$$

Since $1 / n \rightarrow 0$ as $n \rightarrow \infty$ and

$$
\lim _{x \rightarrow 0} \frac{\log (1+c x)}{x}=\left.(\log (1+c x))^{\prime}\right|_{x=0}=\left.\frac{c}{1+c x}\right|_{x=0}=c,
$$

we obtain that $\log a_{n} \rightarrow c$ as $n \rightarrow \infty$. Therefore $a_{n}=e^{\log a_{n}} \rightarrow e^{c}$ as $n \rightarrow \infty$.

Problem 3 (20 pts.) Prove that the series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{2 n-1}}{(2 n-1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots
$$

converges to $\sin x$ for any $x \in \mathbb{R}$.
The function $f(x)=\sin x$ is infinitely differentiable on the entire real line. According to Taylor's formula, for any $x, x_{0} \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+R_{n}\left(x, x_{0}\right),
$$

where

$$
R_{n}\left(x, x_{0}\right)=\frac{f^{(n+1)}(\theta)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

for some $\theta=\theta\left(x, x_{0}\right)$ between x and x_{0}. Since $f^{\prime}(x)=\cos x$ and $f^{\prime \prime}(x)=-\sin x=-f(x)$ for all $x \in \mathbb{R}$, it follows that $\left|f^{(n+1)}(\theta)\right| \leq 1$ for all $n \in \mathbb{N}$ and $\theta \in \mathbb{R}$. Hence $\left|R_{n}\left(x, x_{0}\right)\right| \leq\left|x-x_{0}\right|^{n+1} /(n+1)$!. Let us fix x and x_{0}. Then there exists $N \in \mathbb{N}$ such that $N \geq 2\left|x-x_{0}\right|$. For any natural number $n \geq N$ we have

$$
\left|R_{n}\left(x, x_{0}\right)\right| \leq \frac{\left|x-x_{0}\right|^{n+1}}{(n+1)!} \leq \frac{\left|x-x_{0}\right|^{N}}{N!} \cdot \frac{1}{2^{n+1-N}}
$$

which implies that $R_{n}\left(x, x_{0}\right) \rightarrow 0$ as $n \rightarrow \infty$. In other words, the series

$$
f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\ldots
$$

converges to $f(x)=\sin x$ for all $x, x_{0} \in \mathbb{R}$. In the case $x_{0}=0$, the sequence $\left\{f^{(n)}\left(x_{0}\right)\right\}$ is a periodic sequence $1,0,-1,0,1,0,-1,0, \ldots$ Consequently, this series coincides with the series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{2 n-1}}{(2 n-1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots
$$

up to zero terms.

Problem 4 (20 pts.) Find an indefinite integral and evaluate definite integrals:
(i) $\int \frac{\sqrt{1+\sqrt[4]{x}}}{2 \sqrt{x}} d x$,
(ii) $\int_{0}^{\sqrt{3}} \frac{x^{2}+6}{x^{2}+9} d x$,
(iii) $\int_{0}^{\infty} x^{2} e^{-x} d x$.

To find the indefinite integral, we change the variable twice. First

$$
\int \frac{\sqrt{1+\sqrt[4]{x}}}{2 \sqrt{x}} d x=\int \sqrt{1+\sqrt[4]{x}}(\sqrt{x})^{\prime} d x=\int \sqrt{1+\sqrt[4]{x}} d(\sqrt{x})=\int \sqrt{1+\sqrt{u}} d u
$$

where $u=\sqrt{x}$. Secondly, we introduce another variable $w=\sqrt{1+\sqrt{u}}$. Then $u=\left(w^{2}-1\right)^{2}$ so that $d u=\left(\left(w^{2}-1\right)^{2}\right)^{\prime} d w=2\left(w^{2}-1\right) \cdot 2 w d w=\left(4 w^{3}-4 w\right) d w$. Consequently,

$$
\begin{gathered}
\int \frac{\sqrt{1+\sqrt[4]{x}}}{2 \sqrt{x}} d x=\int \sqrt{1+\sqrt{u}} d u=\int w d u=\int\left(4 w^{4}-4 w^{2}\right) d w \\
=\frac{4}{5} w^{5}-\frac{4}{3} w^{3}+C=\frac{4}{5}\left(1+x^{1 / 4}\right)^{5 / 2}-\frac{4}{3}\left(1+x^{1 / 4}\right)^{3 / 2}+C
\end{gathered}
$$

To evaluate the first definite integral, we use linearity of the integral, a substitution $x=3 u$, and the fact that $(\arctan x)^{\prime}=1 /\left(1+x^{2}\right)$:

$$
\begin{gathered}
\int_{0}^{\sqrt{3}} \frac{x^{2}+6}{x^{2}+9} d x=\int_{0}^{\sqrt{3}}\left(1-\frac{3}{x^{2}+9}\right) d x=\int_{0}^{\sqrt{3}} 1 d x-\int_{0}^{\sqrt{3}} \frac{3}{x^{2}+9} d x \\
=\sqrt{3}-\int_{0}^{\sqrt{3} / 3} \frac{3}{(3 u)^{2}+9} d(3 u)=\sqrt{3}-\int_{0}^{1 / \sqrt{3}} \frac{1}{u^{2}+1} d u=\sqrt{3}-\left.\arctan u\right|_{u=0} ^{1 / \sqrt{3}}=\sqrt{3}-\frac{\pi}{6} .
\end{gathered}
$$

To evaluate the improper integral, we integrate by parts twice:

$$
\begin{gathered}
\int_{0}^{\infty} x^{2} e^{-x} d x=-\int_{0}^{\infty} x^{2}\left(e^{-x}\right)^{\prime} d x=-\int_{0}^{\infty} x^{2} d\left(e^{-x}\right)=-\left.x^{2} e^{-x}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-x} d\left(x^{2}\right) \\
=\int_{0}^{\infty} e^{-x}\left(x^{2}\right)^{\prime} d x=\int_{0}^{\infty} 2 x e^{-x} d x=-\int_{0}^{\infty} 2 x\left(e^{-x}\right)^{\prime} d x=-\int_{0}^{\infty} 2 x d\left(e^{-x}\right) \\
=-\left.2 x e^{-x}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-x} d(2 x)=\int_{0}^{\infty} 2 e^{-x} d x=-\left.2 e^{-x}\right|_{0} ^{\infty}=2
\end{gathered}
$$

Problem 5 (20 pts.) For each of the following series, determine whether the series converges and whether it converges absolutely:
(i) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}$,
(ii) $\sum_{n=1}^{\infty} \frac{\sqrt{n}+2^{n} \cos n}{n!}$,
(iii) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \log n}$.

The first series diverges. Indeed,

$$
\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{(\sqrt{n+1}+\sqrt{n})^{2}}=\frac{1}{(\sqrt{n+1}+\sqrt{n})^{2}}>\frac{1}{(2 \sqrt{n+1})^{2}}=\frac{1}{4(n+1)} .
$$

Since the series $\sum_{n=1}^{\infty}(4(n+1))^{-1}$ diverges, it remains to apply the Comparison Test.
Let a_{n} denote the n-th term of the second series. We have $a_{n}=b_{n}+c_{n} \cos n$, where $b_{n}=\sqrt{n} / n$! and $c_{n}=2^{n} / n$! for all $n \in \mathbb{N}$. The series $\sum_{n=1}^{\infty} b_{n}$ and $\sum_{n=1}^{\infty} c_{n}$ both converge, which can be verified with the Ratio Test:

$$
\begin{gathered}
\frac{b_{n+1}}{b_{n}}=\frac{\sqrt{n+1}}{(n+1)!}\left(\frac{\sqrt{n}}{n!}\right)^{-1}=\left(1+\frac{1}{n}\right)^{1 / 2} \cdot \frac{1}{n+1} \rightarrow 0 \text { as } n \rightarrow \infty, \\
\frac{c_{n+1}}{c_{n}}=\frac{2^{n+1}}{(n+1)!}\left(\frac{2^{n}}{n!}\right)^{-1}=\frac{2}{n+1} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{gathered}
$$

Then the series $\sum_{n=1}^{\infty}\left(b_{n}+c_{n}\right)$ converges as well. Since $\left|a_{n}\right| \leq b_{n}+c_{n}$ for all $n \in \mathbb{N}$, the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely due to the Comparison Test.

The function $f(x)=(x \log x)^{-1}$ is positive and decreasing on $[2, \infty)$. Moreover, $\lim _{x \rightarrow \infty} f(x)=0$. By the Alternating Series Test, the series $\sum_{n=2}^{\infty}(-1)^{n} /(n \log n)$ converges. However the convergence is not absolute due to the Integral Test:

$$
\int_{2}^{c} \frac{1}{x \log x} d x=\int_{2}^{c} \frac{(\log x)^{\prime}}{\log x} d x=\int_{\log 2}^{\log c} \frac{d u}{u}=\log (\log c)-\log (\log 2) \rightarrow+\infty \text { as } c \rightarrow+\infty .
$$

Bonus Problem 6 (15 pts.) Prove that an infinite product

$$
\prod_{n=1}^{\infty} \frac{n^{2}+1}{n^{2}}=\frac{2}{1} \cdot \frac{5}{4} \cdot \frac{10}{9} \cdot \frac{17}{16} \cdot \ldots
$$

converges, that is, partial products $\prod_{k=1}^{n} \frac{k^{2}+1}{k^{2}}$ converge to a finite limit as $n \rightarrow \infty$.
For any $n \in \mathbb{N}$ let $a_{n}=\left(n^{2}+1\right) / n^{2}$ and $p_{n}=a_{1} a_{2} \ldots a_{n}$. Then p_{n} is a partial product of the given infinite product. We have

$$
\log p_{n}=\log \left(a_{1} a_{2} \ldots a_{n}\right)=\log a_{1}+\log a_{2}+\cdots+\log a_{n} .
$$

Using inequality $\log x \leq x-1$, which holds for all $x>0$, we obtain that $\log a_{n} \leq a_{n}-1=1 / n^{2}$. Besides, $\log a_{n}>0$ since $a_{n}>1$. By the Comparison Test, the series $\sum_{n=1}^{\infty} \log a_{n}$ converges. Since $\log p_{n}$ is a partial sum of order n of this series, the sequence $\left\{\log p_{n}\right\}$ converges to a finite limit L. Then $p_{n}=e^{\log p_{n}} \rightarrow e^{L}$ as $n \rightarrow \infty$.

