
MATH 409–501/503 Fall 2013

Sample problems for the final exam: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.) Suppose E1, E2, E3, . . . are countable sets. Prove that their union
E1 ∪ E2 ∪ E3 ∪ . . . is also a countable set.

First we are going to show that the set N×N is countable. Consider a relation ≺ on the set N×N

such that (n1, n2) ≺ (m1,m2) if and only if either n1 + n2 < m1 +m2 or else n1 + n2 = m1 +m2 and
n1 < m1. It is easy to see that ≺ is a strict linear order. Moreover, for any pair (m1,m2) ∈ N×N there
are only finitely many pairs (n1, n2) such that (n1, n2) ≺ (m1,m2). It follows that ≺ is a well-ordering.
Now we define inductively a mapping F : N → N×N such that for any n ∈ N the pair F (n) is the least
(relative to ≺) pair different from F (k) for all natural numbers k < n. It follows from the construction
that F is bijective. Thus N×N is a countable set. By the way, the inverse mapping F−1 can be given
explicitly by

F−1(n1, n2) =
(n1 + n2 − 2)(n1 + n2 − 1)

2
+ n1, n1, n2 ∈ N.

Now suppose that E1, E2, . . . are countable sets. Then for any n ∈ N there exists a bijective
mapping fn : N → En. Let us define a map g : N × N → E1 ∪ E2 ∪ . . . by g(n1, n2) = fn1

(n2).
Obviously, g is onto. Since the set N × N is countable, there exists a sequence p1, p2, p3, . . . that
is a complete list of its elements. Then the sequence g(p1), g(p2), g(p3), . . . contains all elements of
the union E1 ∪ E2 ∪ E3 ∪ . . . Although the latter sequence may include repetitions, we can choose
a subsequence {g(pnk

)} in which every element of the union appears exactly once. Note that the
subsequence is infinite since each of the sets E1, E2, . . . is infinite. Then the map h of N defined by
h(k) = g(pnk

), k = 1, 2, . . . , is a bijection onto E1 ∪ E2 ∪ E3 ∪ . . .

Problem 2 (20 pts.) Find the following limits:

(i) lim
x→0

log
1

1 + cot(x2)
, (ii) lim

x→64

√
x− 8

3
√
x− 4

, (iii) lim
n→∞

(

1 +
c

n

)n

, where c ∈ R.

The function

f(x) = log
1

1 + cot(x2)

can be represented as the composition of 4 functions: f1(x) = x2, f2(y) = cot y, f3(z) = (1 + z)−1,
and f4(u) = log u. Since the function f1 is continuous, we have lim

x→0
f1(x) = f1(0) = 0. Moreover,

f1(x) > 0 for x 6= 0. Since lim
y→0+

cot y = +∞, it follows that f2(f1(x)) → +∞ as x → 0. Further,

f3(z) → 0+ as z → +∞ and f4(u) → −∞ as u → 0+. Finally, f(x) = f4(f3(f2(f1(x)))) → −∞ as
x → 0.
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To find the second limit, consider a function u(x) = x1/6 defined on (0,∞). Since this function is
continuous at 64 and u(64) = 2, we obtain

lim
x→64

√
x− 8

3
√
x− 4

= lim
x→64

(u(x))3 − 8

(u(x))2 − 4
= lim

y→2

y3 − 8

y2 − 4
= lim

y→2

(y − 2)(y2 + 2y + 4)

(y − 2)(y + 2)

= lim
y→2

y2 + 2y + 4

y + 2
=

y2 + 2y + 4

y + 2

∣

∣

∣

∣

y=2

= 3.

Given c ∈ R, let an = (1 + c/n)n for all n ∈ N. For n large enough, we have 1 + c/n > 0 so that
an > 0. Then

log an = log
(

1 +
c

n

)n
= n log

(

1 +
c

n

)

=
log(1 + cx)

x

∣

∣

∣

∣

x=1/n

.

Since 1/n → 0 as n → ∞ and

lim
x→0

log(1 + cx)

x
=

(

log(1 + cx)
)′
∣

∣

∣

x=0
=

c

1 + cx

∣

∣

∣

∣

x=0

= c,

we obtain that log an → c as n → ∞. Therefore an = elog an → ec as n → ∞.

Problem 3 (20 pts.) Prove that the series

∞
∑

n=1

(−1)n+1 x2n−1

(2n− 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ . . .

converges to sin x for any x ∈ R.

The function f(x) = sinx is infinitely differentiable on the entire real line. According to Taylor’s
formula, for any x, x0 ∈ R and n ∈ N,

f(x) = f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n +Rn(x, x0),

where

Rn(x, x0) =
f (n+1)(θ)

(n+ 1)!
(x− x0)

n+1

for some θ = θ(x, x0) between x and x0. Since f ′(x) = cos x and f ′′(x) = − sinx = −f(x) for all
x ∈ R, it follows that |f (n+1)(θ)| ≤ 1 for all n ∈ N and θ ∈ R. Hence |Rn(x, x0)| ≤ |x−x0|n+1/(n+1)!.
Let us fix x and x0. Then there exists N ∈ N such that N ≥ 2|x−x0|. For any natural number n ≥ N
we have

|Rn(x, x0)| ≤
|x− x0|n+1

(n+ 1)!
≤ |x− x0|N

N !
· 1

2n+1−N
,

which implies that Rn(x, x0) → 0 as n → ∞. In other words, the series

f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n + . . .
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converges to f(x) = sinx for all x, x0 ∈ R. In the case x0 = 0, the sequence {f (n)(x0)} is a periodic
sequence 1, 0,−1, 0, 1, 0,−1, 0, . . . Consequently, this series coincides with the series

∞
∑

n=1

(−1)n+1 x2n−1

(2n− 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ . . .

up to zero terms.

Problem 4 (20 pts.) Find an indefinite integral and evaluate definite integrals:

(i)

∫

√

1 + 4
√
x

2
√
x

dx, (ii)

∫

√
3

0

x2 + 6

x2 + 9
dx, (iii)

∫ ∞

0

x2e−x dx.

To find the indefinite integral, we change the variable twice. First

∫

√

1 + 4
√
x

2
√
x

dx =

∫

√

1 + 4
√
x (

√
x)′ dx =

∫

√

1 + 4
√
x d(

√
x) =

∫

√

1 +
√
u du,

where u =
√
x. Secondly, we introduce another variable w =

√

1 +
√
u. Then u = (w2 − 1)2 so that

du =
(

(w2 − 1)2
)′
dw = 2(w2 − 1) · 2w dw = (4w3 − 4w) dw. Consequently,

∫

√

1 + 4
√
x

2
√
x

dx =

∫

√

1 +
√
u du =

∫

w du =

∫

(4w4 − 4w2) dw

=
4

5
w5 − 4

3
w3 + C =

4

5

(

1 + x1/4
)5/2 − 4

3

(

1 + x1/4
)3/2

+ C.

To evaluate the first definite integral, we use linearity of the integral, a substitution x = 3u, and
the fact that (arctan x)′ = 1/(1 + x2):

∫

√
3

0

x2 + 6

x2 + 9
dx =

∫

√
3

0

(

1− 3

x2 + 9

)

dx =

∫

√
3

0
1 dx−

∫

√
3

0

3

x2 + 9
dx

=
√
3−

∫

√
3/3

0

3

(3u)2 + 9
d(3u) =

√
3−

∫ 1/
√
3

0

1

u2 + 1
du =

√
3− arctan u

∣

∣

1/
√
3

u=0
=

√
3− π

6
.

To evaluate the improper integral, we integrate by parts twice:
∫ ∞

0
x2e−x dx = −

∫ ∞

0
x2(e−x)′ dx = −

∫ ∞

0
x2 d(e−x) = −x2e−x

∣

∣

∞
0

+

∫ ∞

0
e−x d(x2)

=

∫ ∞

0
e−x(x2)′ dx =

∫ ∞

0
2xe−x dx = −

∫ ∞

0
2x(e−x)′ dx = −

∫ ∞

0
2x d(e−x)

= −2xe−x
∣

∣

∞
0

+

∫ ∞

0
e−x d(2x) =

∫ ∞

0
2e−x dx = −2e−x

∣

∣

∞
0

= 2.

Problem 5 (20 pts.) For each of the following series, determine whether the series
converges and whether it converges absolutely:
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(i)

∞
∑

n=1

√
n+ 1−√

n√
n+ 1 +

√
n
, (ii)

∞
∑

n=1

√
n+ 2n cosn

n!
, (iii)

∞
∑

n=2

(−1)n

n logn
.

The first series diverges. Indeed,

√
n+ 1−√

n√
n+ 1 +

√
n
=

(√
n+ 1−√

n
)(√

n+ 1 +
√
n
)

(√
n+ 1 +

√
n
)2 =

1
(√

n+ 1 +
√
n
)2 >

1
(

2
√
n+ 1

)2 =
1

4(n+ 1)
.

Since the series
∑∞

n=1

(

4(n + 1)
)−1

diverges, it remains to apply the Comparison Test.
Let an denote the n-th term of the second series. We have an = bn + cn cosn, where bn =

√
n/n!

and cn = 2n/n! for all n ∈ N. The series
∑∞

n=1 bn and
∑∞

n=1 cn both converge, which can be verified
with the Ratio Test:

bn+1

bn
=

√
n+ 1

(n+ 1)!

(√
n

n!

)−1

=

(

1 +
1

n

)1/2

· 1

n+ 1
→ 0 as n → ∞,

cn+1

cn
=

2n+1

(n + 1)!

(

2n

n!

)−1

=
2

n+ 1
→ 0 as n → ∞.

Then the series
∑∞

n=1(bn+ cn) converges as well. Since |an| ≤ bn+ cn for all n ∈ N, the series
∑∞

n=1 an
converges absolutely due to the Comparison Test.

The function f(x) = (x log x)−1 is positive and decreasing on [2,∞). Moreover, lim
x→∞

f(x) = 0.

By the Alternating Series Test, the series
∑∞

n=2(−1)n/(n log n) converges. However the convergence
is not absolute due to the Integral Test:

∫ c

2

1

x log x
dx =

∫ c

2

(log x)′

log x
dx =

∫ log c

log 2

du

u
= log(log c)− log(log 2) → +∞ as c → +∞.

Bonus Problem 6 (15 pts.) Prove that an infinite product

∞
∏

n=1

n2 + 1

n2
=

2

1
· 5
4
· 10
9

· 17
16

· . . .

converges, that is, partial products
∏n

k=1

k2 + 1

k2
converge to a finite limit as n → ∞.

For any n ∈ N let an = (n2+1)/n2 and pn = a1a2 . . . an. Then pn is a partial product of the given
infinite product. We have

log pn = log(a1a2 . . . an) = log a1 + log a2 + · · ·+ log an.

Using inequality log x ≤ x − 1, which holds for all x > 0, we obtain that log an ≤ an − 1 = 1/n2.
Besides, log an > 0 since an > 1. By the Comparison Test, the series

∑∞
n=1 log an converges. Since

log pn is a partial sum of order n of this series, the sequence {log pn} converges to a finite limit L.
Then pn = elog pn → eL as n → ∞.
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