MATH 409
 Advanced Calculus I

Lecture 7:

Monotone sequences.
The Bolzano-Weierstrass theorem.

Limit of a sequence

Definition. Sequence $\left\{x_{n}\right\}$ of real numbers is said to converge to a real number a if for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{n}-a\right|<\varepsilon$ for all $n \geq N$. The number a is called the limit of $\left\{x_{n}\right\}$.
A sequence is called convergent if it has a limit and divergent otherwise.

Properties of convergent sequences:

- the limit is unique;
- any convergent sequence is bounded;
- any subsequence of a convergent sequence converges to the same limit;
- modifying a finite number of elements cannot affect convergence of a sequence or change its limit;
- rearranging elements of a sequence cannot affect its convergence or change its limit.

Limit theorems

Theorem 1 If $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=a$ and $x_{n} \leq w_{n} \leq y_{n}$ for all sufficiently large n, then $\lim _{n \rightarrow \infty} w_{n}=a$.

Theorem 2 If $\lim _{n \rightarrow \infty} x_{n}=a, \lim _{n \rightarrow \infty} y_{n}=b$, and $x_{n} \leq y_{n}$ for all sufficiently large n, then $a \leq b$.

Theorem 3 If $\lim _{n \rightarrow \infty} x_{n}=a$ and $\lim _{n \rightarrow \infty} y_{n}=b$, then $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=a+b, \quad \lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=a-b$, and $\lim _{n \rightarrow \infty} x_{n} y_{n}=a b$. If, additionally, $b \neq 0$ and $y_{n} \neq 0$ for all $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} x_{n} / y_{n}=a / b$.

Examples

- $\lim _{n \rightarrow \infty} \frac{\sin \left(e^{n}\right)}{n}=0$.
$-1 / n \leq \sin \left(e^{n}\right) / n \leq 1 / n$ for all $n \in \mathbb{N}$ since $-1 \leq \sin x \leq 1$ for all $x \in \mathbb{R}$. As shown in the previous lecture, $1 / n \rightarrow 0$ as $n \rightarrow \infty$. Then $-1 / n \rightarrow-1 \cdot 0=0$ as $n \rightarrow \infty$. By the Squeeze Theorem, $\sin \left(e^{n}\right) / n \rightarrow 0$ as $n \rightarrow \infty$.
- $\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0$.

The sequence $\left\{1 / 2^{n}\right\}$ is a subsequence of $\{1 / n\}$. Hence it is converging to the same limit.

Examples

- $\lim _{n \rightarrow \infty} \frac{(1+2 n)^{2}}{1+2 n^{2}}=2$.

$$
\frac{(1+2 n)^{2}}{1+2 n^{2}}=\frac{(1+2 n)^{2} / n^{2}}{\left(1+2 n^{2}\right) / n^{2}}=\frac{(1 / n+2)^{2}}{(1 / n)^{2}+2} \text { for all } n \in \mathbb{N} \text {. }
$$

Since $1 / n \rightarrow 0$ as $n \rightarrow \infty$, it follows that

$$
\begin{array}{r}
1 / n+2 \rightarrow 0+2=2 \text { as } n \rightarrow \infty, \\
(1 / n+2)^{2} \rightarrow 2^{2}=4 \text { as } n \rightarrow \infty, \\
(1 / n)^{2} \rightarrow 0^{2}=0 \text { as } n \rightarrow \infty, \\
(1 / n)^{2}+2 \rightarrow 0+2=2 \text { as } n \rightarrow \infty, \\
\text { and, finally, } \frac{(1 / n+2)^{2}}{(1 / n)^{2}+2} \rightarrow \frac{4}{2}=2 \text { as } n \rightarrow \infty .
\end{array}
$$

Monotone sequences

Definition. A sequence $\left\{x_{n}\right\}$ is called increasing (or nondecreasing) if $x_{1} \leq x_{2} \leq x_{3} \leq \ldots$ or, to be precise, $x_{n} \leq x_{n+1}$ for all $n \in \mathbb{N}$. It is called strictly increasing if $x_{1}<x_{2}<x_{3}<\ldots$, that is, $x_{n}<x_{n+1}$ for all $n \in \mathbb{N}$.
Likewise, the sequence $\left\{x_{n}\right\}$ is called decreasing (or nonincreasing) if $x_{n} \geq x_{n+1}$ for all $n \in \mathbb{N}$. It is called strictly decreasing if $x_{n}>x_{n+1}$ for all $n \in \mathbb{N}$.
Increasing and decreasing sequences are called monotone.
Examples:

- the sequence $\{1 / n\}$ is strictly decreasing;
- the sequence $1,1,2,2,3,3, \ldots$ is increasing, but not strictly increasing;
- the sequence $-1,1,-1,1,-1,1, \ldots$ is neither increasing nor decreasing;
- a constant sequence is both increasing and decreasing.

Theorem Any increasing sequence converges to a limit if it is bounded, and diverges to $+\infty$ otherwise.

Proof: Let $\left\{x_{n}\right\}$ be an increasing sequence. First consider the case when $\left\{x_{n}\right\}$ is bounded. In this case, the set E of all elements occurring in the sequence is bounded. Then $\sup E$ exists. We claim that $x_{n} \rightarrow \sup E$ as $n \rightarrow \infty$. Take any $\varepsilon>0$. Then $\sup E-\varepsilon$ is not an upper bound of E. Hence there exists $n_{0} \in \mathbb{N}$ such that $x_{n_{0}}>\sup E-\varepsilon$. Since the sequence is increasing, it follows that $x_{n} \geq x_{n_{0}}>\sup E-\varepsilon$ for all $n \geq n_{0}$. At the same time, $x_{n} \leq \sup E$ for all $n \in \mathbb{N}$. Therefore $\left|x_{n}-\sup E\right|<\varepsilon$ for all $n \geq n_{0}$, which proves the claim.
Now consider the case when the sequence $\left\{x_{n}\right\}$ is not bounded. Note that the set E is bounded below (as x_{1} is a lower bound). Hence E is not bounded above. Then for any $C \in \mathbb{R}$ there exists $n_{0} \in \mathbb{N}$ such that $x_{n_{0}}>C$. It follows that $x_{n} \geq x_{n_{0}}>C$ for all $n \geq n_{0}$. Thus $\left\{x_{n}\right\}$ diverges to $+\infty$.

Theorem Any decreasing sequence converges to a limit if it is bounded, and diverges to $-\infty$ otherwise.

Proof: Let $\left\{x_{n}\right\}$ be a decreasing sequence. Then the sequence $\left\{-x_{n}\right\}$ is increasing since the inequality $a \geq b$ is equivalent to $-a \leq-b$ for all $a, b \in \mathbb{R}$. By the previous theorem, either $-x_{n} \rightarrow c$ for some $c \in \mathbb{R}$ as $n \rightarrow \infty$, or else $-x_{n}$ diverges to $+\infty$. In the former case, $x_{n} \rightarrow-c$ as $n \rightarrow \infty$ (in particular, it is bounded). In the latter case, x_{n} diverges to $-\infty$ (in particular, it is unbounded).

Corollary Any monotone sequence converges to a limit if it is bounded, and diverges to infinity otherwise.

Nested intervals property

Definition. A sequence of sets I_{1}, l_{2}, \ldots is called nested if $I_{1} \supset I_{2} \supset \ldots$, that is, $I_{n} \supset I_{n+1}$ for all $n \in \mathbb{N}$.

Theorem If $\left\{I_{n}\right\}$ is a nested sequence of nonempty closed bounded intervals, then the intersection $\bigcap_{n \in \mathbb{N}} I_{n}$ is nonempty. Moreover, if lengths $\left|I_{n}\right|$ of the intervals satisfy $\left|I_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$, then the intersection consists of a single point.

Remark 1. The theorem may not hold if the intervals I_{1}, I_{2}, \ldots are open. Counterexample: $I_{n}=(0,1 / n), n \in \mathbb{N}$. The intervals are nested and bounded, but their intersection is empty since $1 / n \rightarrow 0$ as $n \rightarrow \infty$.

Remark 2. The theorem may not hold if the intervals I_{1}, I_{2}, \ldots are not bounded. Counterexample: $I_{n}=[n, \infty)$, $n \in \mathbb{N}$. The intervals are nested and closed, but their intersection is empty since the sequence $\{n\}$ diverges to $+\infty$.

Proof of the theorem

Let $I_{n}=\left[a_{n}, b_{n}\right], n=1,2, \ldots$. Since the sequence $\left\{I_{n}\right\}$ is nested, it follows that the sequence $\left\{a_{n}\right\}$ is increasing while the sequence $\left\{b_{n}\right\}$ is decreasing. Besides, both sequences are bounded (since both are contained in the interval I_{1}). Hence both are convergent: $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$ as $n \rightarrow \infty$. Since $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$, the Comparison Theorem implies that $a \leq b$. We claim that $\bigcap_{n \in \mathbb{N}} I_{n}=[a, b]$. Indeed, we have $a_{n} \leq a$ for all $n \in \mathbb{N}$ (by the Comparison Theorem applied to a_{1}, a_{2}, \ldots and the constant sequence $\left.a_{n}, a_{n}, a_{n} \ldots\right)$.
Similarly, $b \leq b_{n}$ for all $n \in \mathbb{N}$. Therefore $[a, b]$ is contained in the intersection. On the other hand, if $x<a$ then $x<a_{n}$ for some n so that $x \notin I_{n}$. Similarly, if $x>b$ then $x>b_{m}$ for some m so that $x \notin I_{m}$. This proves the claim.
Clearly, the length of $[a, b]$ cannot exceed $\left|I_{n}\right|$ for any $n \in \mathbb{N}$. Therefore $\left|I_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$ implies that $[a, b]$ is a degenerate interval: $a=b$.

Bolzano-Weierstrass Theorem

Theorem Every bounded sequence of real numbers has a convergent subsequence.
Proof: Let $\left\{x_{n}\right\}$ be a bounded sequence of real numbers. We are going to build a nested sequence of intervals $I_{n}=\left[a_{n}, b_{n}\right]$, $n=1,2, \ldots$, such that each I_{n} contains infinitely many elements of $\left\{x_{n}\right\}$ and $\left|I_{n+1}\right|=\left|I_{n}\right| / 2$ for all $n \in \mathbb{N}$. The sequence is built inductively. First we set I_{1} to be any closed bounded interval that contains all elements of $\left\{x_{n}\right\}$ (such an interval exists since the sequence $\left\{x_{n}\right\}$ is bounded). Now assume that for some $n \in \mathbb{N}$ the interval I_{n} is already chosen and it contains infinitely many elements of the sequence $\left\{x_{n}\right\}$. Then at least one of the subintervals $\left.I^{\prime}=\left[a_{n},\left(a_{n}+b_{n}\right) / 2\right)\right]$ and $I^{\prime \prime}=\left[\left(a_{n}+b_{n}\right) / 2, b_{n}\right]$ also contains infinitely many elements of $\left\{x_{n}\right\}$. We set I_{n+1} to be such a subinterval. By construction, $I_{n+1} \subset I_{n}$ and $\left|I_{n+1}\right|=\left|I_{n}\right| / 2$.

Proof (continued): Since $\left|I_{n+1}\right|=\left|I_{n}\right| / 2$ for all $n \in \mathbb{N}$, it follows by induction that $\left|I_{n}\right|=\left|I_{1}\right| / 2^{n-1}$ for all $n \in \mathbb{N}$. As a consequence, $\left|I_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. By the nested intervals property, the intersection of the intervals $I_{1}, I_{2}, I_{3}, \ldots$ consists of a single number a.

Next we are going to build a strictly increasing sequence of natural numbers n_{1}, n_{2}, \ldots such that $x_{n_{k}} \in I_{k}$ for all $k \in \mathbb{N}$. The sequence is built inductively. First we choose n_{1} so that $x_{n_{1}} \in I_{1}$. Now assume that for some $k \in \mathbb{N}$ the number n_{k} is already chosen. Since the interval I_{k+1} contains infinitely many elements of the sequence $\left\{x_{n}\right\}$, there exists $m>n_{k}$ such that $x_{m} \in I_{k+1}$. We set $n_{k+1}=m$.

Now we claim that the subsequence $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$ of the sequence $\left\{x_{n}\right\}$ converges to a. Indeed, for any $k \in \mathbb{N}$ the points $x_{n_{k}}$ and a both belong to the interval I_{k}. Hence $\left|x_{n_{k}}-a\right| \leq\left|I_{k}\right|$. Since $\left|I_{k}\right| \rightarrow 0$ as $k \rightarrow \infty$, it follows that $x_{n_{k}} \rightarrow a$ as $k \rightarrow \infty$.

