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Advanced Calculus I

Lecture 7:

Monotone sequences.

The Bolzano-Weierstrass theorem.



Limit of a sequence

Definition. Sequence {xn} of real numbers is said to
converge to a real number a if for any ε > 0 there exists
N ∈ N such that |xn − a| < ε for all n ≥ N. The number a
is called the limit of {xn}.

A sequence is called convergent if it has a limit and
divergent otherwise.

Properties of convergent sequences:

• the limit is unique;
• any convergent sequence is bounded;
• any subsequence of a convergent sequence converges to
the same limit;
• modifying a finite number of elements cannot affect
convergence of a sequence or change its limit;
• rearranging elements of a sequence cannot affect its
convergence or change its limit.



Limit theorems

Theorem 1 If lim
n→∞

xn = lim
n→∞

yn = a and

xn ≤ wn ≤ yn for all sufficiently large n, then

lim
n→∞

wn = a.

Theorem 2 If lim
n→∞

xn = a, lim
n→∞

yn = b, and

xn ≤ yn for all sufficiently large n, then a ≤ b.

Theorem 3 If lim
n→∞

xn = a and lim
n→∞

yn = b,

then lim
n→∞

(xn+ yn) = a+ b, lim
n→∞

(xn− yn) = a− b,

and lim
n→∞

xnyn = ab. If, additionally, b 6= 0 and

yn 6= 0 for all n ∈ N, then lim
n→∞

xn/yn = a/b.



Examples

• lim
n→∞

sin(en)

n
= 0.

−1/n ≤ sin(en)/n ≤ 1/n for all n ∈ N since −1 ≤ sin x ≤ 1
for all x ∈ R. As shown in the previous lecture, 1/n → 0 as
n → ∞. Then −1/n → − 1 · 0 = 0 as n → ∞. By the
Squeeze Theorem, sin(en)/n → 0 as n → ∞.

• lim
n→∞

1

2n
= 0.

The sequence {1/2n} is a subsequence of {1/n}. Hence it is
converging to the same limit.



Examples

• lim
n→∞

(1 + 2n)2

1 + 2n2
= 2.

(1 + 2n)2

1 + 2n2
=

(1 + 2n)2/n2

(1 + 2n2)/n2
=

(1/n + 2)2

(1/n)2 + 2
for all n ∈ N.

Since 1/n → 0 as n → ∞, it follows that

1/n + 2 → 0 + 2 = 2 as n → ∞,

(1/n + 2)2 → 22 = 4 as n → ∞,

(1/n)2 → 02 = 0 as n → ∞,

(1/n)2 + 2 → 0 + 2 = 2 as n → ∞,

and, finally,
(1/n + 2)2

(1/n)2 + 2
→

4

2
= 2 as n → ∞.



Monotone sequences

Definition. A sequence {xn} is called increasing (or
nondecreasing) if x1 ≤ x2 ≤ x3 ≤ . . . or, to be precise,
xn ≤ xn+1 for all n ∈ N. It is called strictly increasing if
x1 < x2 < x3 < . . . , that is, xn < xn+1 for all n ∈ N.

Likewise, the sequence {xn} is called decreasing (or
nonincreasing) if xn ≥ xn+1 for all n ∈ N. It is called
strictly decreasing if xn > xn+1 for all n ∈ N.

Increasing and decreasing sequences are called monotone.

Examples:

• the sequence {1/n} is strictly decreasing;
• the sequence 1, 1, 2, 2, 3, 3, . . . is increasing, but not
strictly increasing;
• the sequence −1, 1,−1, 1,−1, 1, . . . is neither increasing
nor decreasing;
• a constant sequence is both increasing and decreasing.



Theorem Any increasing sequence converges to a

limit if it is bounded, and diverges to +∞ otherwise.

Proof: Let {xn} be an increasing sequence. First consider
the case when {xn} is bounded. In this case, the set E of all
elements occurring in the sequence is bounded. Then supE
exists. We claim that xn → supE as n → ∞. Take any
ε > 0. Then supE − ε is not an upper bound of E . Hence
there exists n0 ∈ N such that xn0 > supE − ε. Since the
sequence is increasing, it follows that xn ≥ xn0 > sup E − ε
for all n ≥ n0. At the same time, xn ≤ supE for all n ∈ N.
Therefore |xn − supE | < ε for all n ≥ n0, which proves the
claim.

Now consider the case when the sequence {xn} is not
bounded. Note that the set E is bounded below (as x1 is a
lower bound). Hence E is not bounded above. Then for any
C ∈ R there exists n0 ∈ N such that xn0 > C . It follows that
xn ≥ xn0 > C for all n ≥ n0. Thus {xn} diverges to +∞.



Theorem Any decreasing sequence converges to a

limit if it is bounded, and diverges to −∞ otherwise.

Proof: Let {xn} be a decreasing sequence. Then the
sequence {−xn} is increasing since the inequality a ≥ b is
equivalent to −a ≤ −b for all a, b ∈ R. By the previous
theorem, either −xn → c for some c ∈ R as n → ∞, or else
−xn diverges to +∞. In the former case, xn → −c as
n → ∞ (in particular, it is bounded). In the latter case, xn
diverges to −∞ (in particular, it is unbounded).

Corollary Any monotone sequence converges to a
limit if it is bounded, and diverges to infinity

otherwise.



Nested intervals property

Definition. A sequence of sets I1, I2, . . . is called nested if
I1 ⊃ I2 ⊃ . . . , that is, In ⊃ In+1 for all n ∈ N.

Theorem If {In} is a nested sequence of nonempty closed
bounded intervals, then the intersection

⋂
n∈N

In is nonempty.
Moreover, if lengths |In| of the intervals satisfy |In| → 0 as
n → ∞, then the intersection consists of a single point.

Remark 1. The theorem may not hold if the intervals
I1, I2, . . . are open. Counterexample: In = (0, 1/n), n ∈ N.
The intervals are nested and bounded, but their intersection is
empty since 1/n → 0 as n → ∞.

Remark 2. The theorem may not hold if the intervals
I1, I2, . . . are not bounded. Counterexample: In = [n,∞),
n ∈ N. The intervals are nested and closed, but their
intersection is empty since the sequence {n} diverges to +∞.



Proof of the theorem

Let In = [an, bn], n = 1, 2, . . . Since the sequence {In} is
nested, it follows that the sequence {an} is increasing while
the sequence {bn} is decreasing. Besides, both sequences are
bounded (since both are contained in the interval I1). Hence
both are convergent: an → a and bn → b as n → ∞. Since
an ≤ bn for all n ∈ N, the Comparison Theorem implies that
a ≤ b. We claim that

⋂
n∈N

In = [a, b]. Indeed, we have
an ≤ a for all n ∈ N (by the Comparison Theorem applied to
a1, a2, . . . and the constant sequence an, an, an . . . ).
Similarly, b ≤ bn for all n ∈ N. Therefore [a, b] is contained
in the intersection. On the other hand, if x < a then x < an
for some n so that x /∈ In. Similarly, if x > b then x > bm
for some m so that x /∈ Im. This proves the claim.

Clearly, the length of [a, b] cannot exceed |In| for any n ∈ N.
Therefore |In| → 0 as n → ∞ implies that [a, b] is a
degenerate interval: a = b.



Bolzano-Weierstrass Theorem

Theorem Every bounded sequence of real numbers

has a convergent subsequence.

Proof: Let {xn} be a bounded sequence of real numbers. We
are going to build a nested sequence of intervals In = [an, bn],
n = 1, 2, . . . , such that each In contains infinitely many
elements of {xn} and |In+1| = |In|/2 for all n ∈ N. The
sequence is built inductively. First we set I1 to be any closed
bounded interval that contains all elements of {xn} (such an
interval exists since the sequence {xn} is bounded). Now
assume that for some n ∈ N the interval In is already chosen
and it contains infinitely many elements of the sequence {xn}.
Then at least one of the subintervals I ′ = [an, (an + bn)/2)]
and I ′′ = [(an + bn)/2, bn] also contains infinitely many
elements of {xn}. We set In+1 to be such a subinterval. By
construction, In+1 ⊂ In and |In+1| = |In|/2.



Proof (continued): Since |In+1| = |In|/2 for all n ∈ N, it
follows by induction that |In| = |I1|/2

n−1 for all n ∈ N. As a
consequence, |In| → 0 as n → ∞. By the nested intervals
property, the intersection of the intervals I1, I2, I3, . . . consists
of a single number a.

Next we are going to build a strictly increasing sequence of
natural numbers n1, n2, . . . such that xnk ∈ Ik for all k ∈ N.
The sequence is built inductively. First we choose n1 so that
xn1 ∈ I1. Now assume that for some k ∈ N the number nk is
already chosen. Since the interval Ik+1 contains infinitely
many elements of the sequence {xn}, there exists m > nk
such that xm ∈ Ik+1. We set nk+1 = m.

Now we claim that the subsequence {xnk}k∈N of the sequence
{xn} converges to a. Indeed, for any k ∈ N the points xnk
and a both belong to the interval Ik . Hence |xnk − a| ≤ |Ik |.
Since |Ik | → 0 as k → ∞, it follows that xnk → a as
k → ∞.


