MATH 409

Advanced Calculus I

Lecture 21:
 Review for Test 2.

Topics for Test 2

- Derivative of a function
- Differentiability theorems
- Derivative of the inverse function
- The mean value theorem
- Taylor's formula
- I'Hôpital's rule
- Darboux sums, Riemann sums, the Riemann integral
- Properties of integrals
- The fundamental theorem of calculus
- Integration by parts
- Change of the variable in an integral

Wade's book: 4.1-4.5, 5.1-5.3

Differentiability theorems

Theorem If functions f and g are differentiable at a point $a \in \mathbb{R}$, then their sum $f+g$, difference $f-g$, and product $f \cdot g$ are also differentiable at a. Moreover,

$$
\begin{gathered}
(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a), \\
(f-g)^{\prime}(a)=f^{\prime}(a)-g^{\prime}(a), \\
(f \cdot g)^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a) .
\end{gathered}
$$

If, additionally, $g(a) \neq 0$ then the quotient f / g is also differentiable at a and

$$
\left(\frac{f}{g}\right)^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{(g(a))^{2}}
$$

Theorem If a function f is differentiable at a point $a \in \mathbb{R}$ and a function g is differentiable at $f(a)$, then the composition $g \circ f$ is differentiable at a. Moreover,

$$
(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) \cdot f^{\prime}(a) .
$$

More theorems to know

Theorem If a function f is differentiable at a point c, then it is continuous at c.

Rolle's Theorem If a function f is continuous on a closed interval $[a, b]$, differentiable on the open interval (a, b), and if $f(a)=f(b)$, then $f^{\prime}(c)=0$ for some $c \in(a, b)$.

Mean Value Theorem If a function f is continuous on $[a, b]$ and differentiable on (a, b), then there exists $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.

Theorem Suppose that a function f is continuous on $[a, b]$ and differentiable on (a, b). Then the following hold.
(i) f is increasing on $[a, b]$ if and only if $f^{\prime} \geq 0$ on (a, b).
(ii) f is decreasing on $[a, b]$ if and only if $f^{\prime} \leq 0$ on (a, b).
(iii) f is constant on $[a, b]$ if and only if $f^{\prime}=0$ on (a, b).

Properties of integrals

Theorem If functions f, g are integrable on an interval $[a, b]$, then the sum $f+g$ is also integrable on $[a, b]$ and

$$
\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

Theorem If a function f is integrable on $[a, b]$, then for each $\alpha \in \mathbb{R}$ the scalar multiple αf is also integrable on $[a, b]$ and

$$
\int_{a}^{b} \alpha f(x) d x=\alpha \int_{a}^{b} f(x) d x
$$

Properties of integrals

Theorem If a function f is integrable on $[a, b]$ then for any $c \in(a, b)$,

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Theorem If functions f, g are integrable on $[a, b]$ and $f(x) \leq g(x)$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
$$

Fundamental theorem of calculus

Theorem If a function f is continuous on an interval $[a, b]$, then the function

$$
F(x)=\int_{a}^{x} f(t) d t, \quad x \in[a, b]
$$

is continuously differentiable on $[a, b]$. Moreover, $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$.

Theorem If a function F is differentiable on $[a, b]$ and the derivative F^{\prime} is integrable on $[a, b]$, then

$$
\int_{a}^{x} F^{\prime}(t) d t=F(x)-F(a) \text { for all } x \in[a, b] .
$$

Sample problems for Test 2

Problem 1 (20 pts.) Prove the Chain Rule: if a function f is differentiable at a point c and a function g is differentiable at $f(c)$, then the composition $g \circ f$ is differentiable at c and $(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) \cdot f^{\prime}(c)$.

Problem 2 (25 pts.) Find the following limits of functions:
(i) $\lim _{x \rightarrow 0}(1+x)^{1 / x}$,
(ii) $\lim _{x \rightarrow+\infty}(1+x)^{1 / x}$,
(iii) $\lim _{x \rightarrow 0+} x^{x}$.

Sample problems for Test 2

Problem 3 (20 pts.) Find the limit of a sequence

$$
x_{n}=\frac{1^{k}+2^{k}+\cdots+n^{k}}{n^{k+1}}, \quad n=1,2, \ldots
$$

where k is a natural number.

Sample problems for Test 2

Problem 4 (25 pts.) Find indefinite integrals and evaluate definite integrals:
(i) $\int \frac{x^{2}}{1-x} d x, \quad$ (ii) $\int_{0}^{\pi} \sin ^{2}(2 x) d x$,
(iii) $\int \log ^{3} x d x$,
(iv) $\int_{0}^{1 / 2} \frac{x}{\sqrt{1-x^{2}}} d x$,
(v) $\int_{0}^{1} \frac{1}{\sqrt{4-x^{2}}} d x$.

Sample problems for Test 2

Bonus Problem 5 (15 pts.) Suppose that a function $p: \mathbb{R} \rightarrow \mathbb{R}$ is locally a polynomial, which means that for every $c \in \mathbb{R}$ there exists $\varepsilon>0$ such that p coincides with a polynomial on the interval $(c-\varepsilon, c+\varepsilon)$. Prove that p is a polynomial.

Bonus Problem 6 (15 pts.) Show that a function

$$
f(x)=\left\{\begin{array}{l}
\exp \left(-\frac{1}{1-x^{2}}\right) \text { if }|x|<1 \\
0 \text { if }|x| \geq 1
\end{array}\right.
$$

is infinitely differentiable on \mathbb{R}.

Problem 2 Find the following limits of functions:
(i) $\lim _{x \rightarrow 0}(1+x)^{1 / x}, \quad$ (ii) $\lim _{x \rightarrow+\infty}(1+x)^{1 / x}$.

The function $f(x)=(1+x)^{1 / x}$ is well defined on $(-1,0) \cup(0, \infty)$. Since $f(x)>0$ for all $x>-1, x \neq 0$, a function $g(x)=\log f(x)$ is well defined on $(-1,0) \cup(0, \infty)$ as well. For any $x>-1, x \neq 0$, we have $g(x)=\log (1+x)^{1 / x}=x^{-1} \log (1+x)$. Hence $g=h_{1} / h_{2}$, where the functions $h_{1}(x)=\log (1+x)$ and $h_{2}(x)=x$ are continuously differentiable on $(-1, \infty)$. Since $h_{1}(0)=h_{2}(0)=0$, it follows that $\lim _{x \rightarrow 0} h_{1}(x)=\lim _{x \rightarrow 0} h_{2}(x)=0$.
By l'Hôpital's Rule,

$$
\lim _{x \rightarrow 0} \frac{h_{1}(x)}{h_{2}(x)}=\lim _{x \rightarrow 0} \frac{h_{1}^{\prime}(x)}{h_{2}^{\prime}(x)}
$$

assuming the latter limit exists.

Since $h_{1}^{\prime}(0)=\left.(1+x)^{-1}\right|_{x=0}=1$ and $h_{2}^{\prime}(0)=1$, we obtain

$$
\lim _{x \rightarrow 0} \frac{h_{1}(x)}{h_{2}(x)}=\lim _{x \rightarrow 0} \frac{h_{1}^{\prime}(x)}{h_{2}^{\prime}(x)}=\frac{\lim _{x \rightarrow 0} h_{1}^{\prime}(x)}{\lim _{x \rightarrow 0} h_{2}^{\prime}(x)}=\frac{1}{1}=1
$$

Further, $\lim _{x \rightarrow+\infty} h_{1}(x)=\lim _{x \rightarrow+\infty} h_{2}(x)=+\infty$. At the same time, $h_{1}^{\prime}(x)=(1+x)^{-1} \rightarrow 0$ as $x \rightarrow+\infty$ while h_{2}^{\prime} is identically 1 . Using l'Hôpital's Rule and a limit theorem, we obtain

$$
\lim _{x \rightarrow+\infty} \frac{h_{1}(x)}{h_{2}(x)}=\lim _{x \rightarrow+\infty} \frac{h_{1}^{\prime}(x)}{h_{2}^{\prime}(x)}=\frac{\lim _{x \rightarrow+\infty} h_{1}^{\prime}(x)}{\lim _{x \rightarrow+\infty} h_{2}^{\prime}(x)}=\frac{0}{1}=0 .
$$

Since $f=e^{g}$, a composition of g with a continuous function, it follows that

$$
\begin{gathered}
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} e^{g(x)}=\exp \left(\lim _{x \rightarrow 0} g(x)\right)=e^{1}=e, \\
\lim _{x \rightarrow+\infty} f(x)=\exp \left(\lim _{x \rightarrow+\infty} g(x)\right)=e^{0}=1 .
\end{gathered}
$$

Problem 3 Find the limit of a sequence

$$
x_{n}=\frac{1^{k}+2^{k}+\cdots+n^{k}}{n^{k+1}}, \quad n=1,2, \ldots,
$$

where k is a natural number.
The general element of the sequence can be represented as
$x_{n}=\frac{1^{k}+2^{k}+\cdots+n^{k}}{n^{k}} \cdot \frac{1}{n}=\left(\frac{1}{n}\right)^{k} \frac{1}{n}+\left(\frac{2}{n}\right)^{k} \frac{1}{n}+\cdots+\left(\frac{n}{n}\right)^{k} \frac{1}{n}$,
which shows that x_{n} is a Riemann sum of the function $f(x)=x^{k}$ on the interval $[0,1]$ that corresponds to the partition $P_{n}=\{0,1 / n, 2 / n, \ldots,(n-1) / n, 1\}$ and samples $t_{j}=j / n, j=1,2, \ldots, n$. The norm of the partition is $\left\|P_{n}\right\|=1 / n$. Since $\left\|P_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$ and the function f is integrable on $[0,1]$, the Riemann sums x_{n} converge to the integral:

$$
\lim _{n \rightarrow \infty} x_{n}=\int_{0}^{1} x^{k} d x=\left.\frac{x^{k+1}}{k+1}\right|_{x=0} ^{1}=\frac{1}{k+1}
$$

Problem 4 Find indefinite integrals and evaluate definite integrals:
(i) $\int \frac{x^{2}}{1-x} d x$.

To find the indefinite integral of this rational function, we expand it into the sum of a polynomial and a simple fraction:

$$
\frac{x^{2}}{1-x}=\frac{x^{2}-1+1}{1-x}=\frac{x^{2}-1}{1-x}+\frac{1}{1-x}=-x-1-\frac{1}{x-1} .
$$

Since the domain of the function is $(-\infty, 1) \cup(1, \infty)$, the indefinite integral has different representations on the intervals $(-\infty, 1)$ and $(1, \infty)$:

$$
\int \frac{x^{2}}{1-x} d x=\left\{\begin{array}{l}
-x^{2} / 2-x-\log (1-x)+C_{1}, x<1 \\
-x^{2} / 2-x-\log (x-1)+C_{2}, x>1
\end{array}\right.
$$

Problem 4 Find indefinite integrals and evaluate definite integrals:
(ii) $\int_{0}^{\pi} \sin ^{2}(2 x) d x$.

To integrate this function, we use a trigonometric formula $1-\cos (2 \alpha)=2 \sin ^{2} \alpha$ and a new variable $u=4 x$:

$$
\begin{gathered}
\int_{0}^{\pi} \sin ^{2}(2 x) d x=\int_{0}^{\pi} \frac{1-\cos (4 x)}{2} d x \\
=\int_{0}^{\pi} \frac{1-\cos (4 x)}{8} d(4 x)=\int_{0}^{4 \pi} \frac{1-\cos u}{8} d u \\
=\left.\frac{u-\sin u}{8}\right|_{u=0} ^{4 \pi}=\frac{\pi}{2} .
\end{gathered}
$$

Problem 4 Find indefinite integrals and evaluate definite integrals:
(iii) $\int \log ^{3} x d x$.

To find this indefinite integral, we integrate by parts:

$$
\begin{aligned}
& \int \log ^{3} x d x=x \log ^{3} x-\int x d\left(\log ^{3} x\right)=x \log ^{3} x-\int x\left(\log ^{3} x\right)^{\prime} d x \\
& =x \log ^{3} x-\int 3 \log ^{2} x d x=x \log ^{3} x-3 x \log ^{2} x+\int x d\left(3 \log ^{2} x\right) \\
& =x \log ^{3} x-3 x \log ^{2} x+\int 6 \log x d x \\
& =x \log ^{3} x-3 x \log ^{2} x+6 x \log x-\int x d(6 \log x) \\
& =x \log ^{3} x-3 x \log ^{2} x+6 x \log x-\int 6 d x \\
& =x \log ^{3} x-3 x \log ^{2} x+6 x \log x-6 x+C \text {. }
\end{aligned}
$$

Problem 4 Find indefinite integrals and evaluate definite integrals:
(iv) $\int_{0}^{1 / 2} \frac{x}{\sqrt{1-x^{2}}} d x$.

To integrate this function, we introduce a new variable $u=1-x^{2}$:

$$
\begin{gathered}
\int_{0}^{1 / 2} \frac{x}{\sqrt{1-x^{2}}} d x=-\frac{1}{2} \int_{0}^{1 / 2} \frac{\left(1-x^{2}\right)^{\prime}}{\sqrt{1-x^{2}}} d x \\
=-\frac{1}{2} \int_{0}^{1 / 2} \frac{1}{\sqrt{1-x^{2}}} d\left(1-x^{2}\right)=-\frac{1}{2} \int_{1}^{3 / 4} \frac{1}{\sqrt{u}} d u \\
=\int_{3 / 4}^{1} \frac{1}{2 \sqrt{u}} d u=\left.\sqrt{u}\right|_{u=3 / 4} ^{1}=1-\frac{\sqrt{3}}{2} .
\end{gathered}
$$

Problem 4 Find indefinite integrals and evaluate definite integrals:
(v) $\int_{0}^{1} \frac{1}{\sqrt{4-x^{2}}} d x$.

To integrate this function, we use a substitution $x=2 \sin t$ (observe that x changes from 0 to 1 when t changes from 0 to $\pi / 6)$:

$$
\begin{gathered}
\int_{0}^{1} \frac{1}{\sqrt{4-x^{2}}} d x=\int_{0}^{\pi / 6} \frac{1}{\sqrt{4-(2 \sin t)^{2}}} d(2 \sin t) \\
=\int_{0}^{\pi / 6} \frac{(2 \sin t)^{\prime}}{\sqrt{4-4 \sin ^{2} t}} d t=\int_{0}^{\pi / 6} \frac{2 \cos t}{\sqrt{4 \cos ^{2} t}} d t \\
=\int_{0}^{\pi / 6} \frac{2 \cos t}{2 \cos t} d t=\int_{0}^{\pi / 6} 1 d x=\frac{\pi}{6} .
\end{gathered}
$$

Bonus Problem 5 Suppose that a function
$p: \mathbb{R} \rightarrow \mathbb{R}$ is locally a polynomial, which means
that for every $c \in \mathbb{R}$ there exists $\varepsilon>0$ such that p
coincides with a polynomial on the interval
$(c-\varepsilon, c+\varepsilon)$. Prove that p is a polynomial.

For any $c \in \mathbb{R}$ let p_{c} denote a polynomial and ε_{c} denote a positive number such that $p(x)=p_{c}(x)$ for all $x \in\left(c-\varepsilon_{c}, c+\varepsilon_{c}\right)$. Consider two sets
$E_{+}=\left\{x>0 \mid p(x) \neq p_{0}(x)\right\}$ and $E_{-}=\left\{x<0 \mid p(x) \neq p_{0}(x)\right\}$.
We are going to show that $E_{+}=E_{-}=\emptyset$. This would imply that $p=p_{0}$ on the entire real line.

Assume that the set E_{+}is not empty. Clearly, E_{+}is bounded below. Hence $d=\inf E_{+}$is a well-defined real number. Note that $E_{+} \subset\left[\varepsilon_{0}, \infty\right)$. Therefore $d \geq \varepsilon_{0}>0$.
Observe that $p(x)=p_{0}(x)$ for $x \in(0, d)$ and $p(x)=p_{d}(x)$ for $x \in\left(d-\varepsilon_{d}, d+\varepsilon_{d}\right)$. The interval $(0, d)$ overlaps with the interval $\left(d-\varepsilon_{d}, d+\varepsilon_{d}\right)$. Hence p_{d} coincides with p_{0} on the intersection $(0, d) \cap\left(d-\varepsilon_{d}, d+\varepsilon_{d}\right)$. Equivalently, the difference $p_{d}-p_{0}$ is zero on $(0, d) \cap\left(d-\varepsilon_{d}, d+\varepsilon_{d}\right)$. Since $p_{d}-p_{0}$ is a polynomial and any nonzero polynomial has only finitely many roots, we conclude that $p_{d}-p_{0}$ is identically 0 . Then the polynomials p_{d} and p_{0} are the same. It follows that $p(x)=p_{0}(x)$ for $x \in\left(0, d+\varepsilon_{d}\right)$ so that $d \neq \inf E_{+}$, a contradiction. Thus $E_{+}=\emptyset$. Similarly, we prove that the set E_{-}is empty as well. Since $E_{+}=E_{-}=\emptyset$, the function p coincides with the polynomial p_{0}.

