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Advanced Calculus I

Lecture 21:
Review for Test 2.



Topics for Test 2

• Derivative of a function

• Differentiability theorems

• Derivative of the inverse function

• The mean value theorem

• Taylor’s formula

• l’Hôpital’s rule

• Darboux sums, Riemann sums, the Riemann integral

• Properties of integrals

• The fundamental theorem of calculus

• Integration by parts

• Change of the variable in an integral

Wade’s book: 4.1–4.5, 5.1–5.3



Differentiability theorems

Theorem If functions f and g are differentiable at a point
a ∈ R, then their sum f + g , difference f − g , and product
f · g are also differentiable at a. Moreover,

(f + g)′(a) = f ′(a) + g ′(a),

(f − g)′(a) = f ′(a)− g ′(a),

(f · g)′(a) = f ′(a)g(a) + f (a)g ′(a).

If, additionally, g(a) 6= 0 then the quotient f /g is also
differentiable at a and

(

f

g

)

′

(a) =
f ′(a)g(a)− f (a)g ′(a)

(g(a))2
.

Theorem If a function f is differentiable at a point a ∈ R

and a function g is differentiable at f (a), then the
composition g ◦ f is differentiable at a. Moreover,

(g ◦ f )′(a) = g ′(f (a)) · f ′(a).



More theorems to know

Theorem If a function f is differentiable at a point c, then it
is continuous at c.

Rolle’s Theorem If a function f is continuous on a closed
interval [a, b], differentiable on the open interval (a, b), and
if f (a) = f (b), then f ′(c) = 0 for some c ∈ (a, b).

Mean Value Theorem If a function f is continuous on
[a, b] and differentiable on (a, b), then there exists c ∈ (a, b)
such that f (b)− f (a) = f ′(c) (b − a).

Theorem Suppose that a function f is continuous on [a, b]
and differentiable on (a, b). Then the following hold.

(i) f is increasing on [a, b] if and only if f ′ ≥ 0 on (a, b).
(ii) f is decreasing on [a, b] if and only if f ′ ≤ 0 on (a, b).
(iii) f is constant on [a, b] if and only if f ′ = 0 on (a, b).



Properties of integrals

Theorem If functions f , g are integrable on an

interval [a, b], then the sum f + g is also
integrable on [a, b] and
∫

b

a

(

f (x) + g(x)
)

dx =

∫

b

a

f (x) dx +

∫

b

a

g(x) dx .

Theorem If a function f is integrable on [a, b],
then for each α ∈ R the scalar multiple αf is also

integrable on [a, b] and
∫

b

a

αf (x) dx = α

∫

b

a

f (x) dx .



Properties of integrals

Theorem If a function f is integrable on [a, b]

then for any c ∈ (a, b),
∫

b

a

f (x) dx =

∫

c

a

f (x) dx +

∫

b

c

f (x) dx .

Theorem If functions f , g are integrable on [a, b]

and f (x) ≤ g(x) for all x ∈ [a, b], then
∫

b

a

f (x) dx ≤
∫

b

a

g(x) dx .



Fundamental theorem of calculus

Theorem If a function f is continuous on an
interval [a, b], then the function

F (x) =

∫

x

a

f (t) dt, x ∈ [a, b],

is continuously differentiable on [a, b]. Moreover,
F ′(x) = f (x) for all x ∈ [a, b].

Theorem If a function F is differentiable on [a, b]

and the derivative F ′ is integrable on [a, b], then
∫

x

a

F ′(t) dt = F (x)− F (a) for all x ∈ [a, b].



Sample problems for Test 2

Problem 1 (20 pts.) Prove the Chain Rule:

if a function f is differentiable at a point c and
a function g is differentiable at f (c), then the

composition g ◦ f is differentiable at c and
(g ◦ f )′(c) = g ′(f (c)) · f ′(c).

Problem 2 (25 pts.) Find the following limits of
functions:

(i) lim
x→0

(1 + x)1/x , (ii) lim
x→+∞

(1 + x)1/x ,

(iii) lim
x→0+

x x .



Sample problems for Test 2

Problem 3 (20 pts.) Find the limit of a sequence

xn =
1k + 2k + · · ·+ nk

nk+1
, n = 1, 2, . . . ,

where k is a natural number.



Sample problems for Test 2

Problem 4 (25 pts.) Find indefinite integrals and
evaluate definite integrals:

(i)

∫

x2

1− x
dx , (ii)

∫ π

0

sin2(2x) dx ,

(iii)

∫

log3 x dx , (iv)

∫

1/2

0

x√
1− x2

dx ,

(v)

∫

1

0

1√
4− x2

dx .



Sample problems for Test 2

Bonus Problem 5 (15 pts.) Suppose that a
function p : R → R is locally a polynomial, which

means that for every c ∈ R there exists ε > 0 such
that p coincides with a polynomial on the interval

(c − ε, c + ε). Prove that p is a polynomial.

Bonus Problem 6 (15 pts.) Show that a
function

f (x) =







exp

(

− 1

1− x2

)

if |x | < 1,

0 if |x | ≥ 1

is infinitely differentiable on R.



Problem 2 Find the following limits of functions:

(i) lim
x→0

(1 + x)1/x , (ii) lim
x→+∞

(1 + x)1/x .

The function f (x) = (1 + x)1/x is well defined on
(−1, 0) ∪ (0,∞). Since f (x) > 0 for all x > −1, x 6= 0, a
function g(x) = log f (x) is well defined on (−1, 0) ∪ (0,∞)
as well. For any x > −1, x 6= 0, we have
g(x) = log(1 + x)1/x = x−1 log(1 + x). Hence g = h1/h2,
where the functions h1(x) = log(1 + x) and h2(x) = x are
continuously differentiable on (−1,∞). Since
h1(0) = h2(0) = 0, it follows that lim

x→0
h1(x) = lim

x→0
h2(x) = 0.

By l’Hôpital’s Rule,

lim
x→0

h1(x)

h2(x)
= lim

x→0

h′1(x)

h′2(x)

assuming the latter limit exists.



Since h′1(0) = (1 + x)−1|x=0 = 1 and h′2(0) = 1, we obtain

lim
x→0

h1(x)

h2(x)
= lim

x→0

h′1(x)

h′2(x)
=

lim
x→0

h′1(x)

lim
x→0

h′2(x)
=

1

1
= 1.

Further, lim
x→+∞

h1(x) = lim
x→+∞

h2(x) = +∞. At the same

time, h′1(x) = (1 + x)−1 → 0 as x → +∞ while h′2 is
identically 1. Using l’Hôpital’s Rule and a limit theorem, we
obtain

lim
x→+∞

h1(x)

h2(x)
= lim

x→+∞

h′1(x)

h′2(x)
=

lim
x→+∞

h′1(x)

lim
x→+∞

h′2(x)
=

0

1
= 0.

Since f = eg , a composition of g with a continuous function,
it follows that

lim
x→0

f (x) = lim
x→0

eg(x) = exp
(

lim
x→0

g(x)
)

= e1 = e,

lim
x→+∞

f (x) = exp
(

lim
x→+∞

g(x)
)

= e0 = 1.



Problem 3 Find the limit of a sequence

xn =
1k + 2k + · · ·+ nk

nk+1
, n = 1, 2, . . . ,

where k is a natural number.

The general element of the sequence can be represented as

xn =
1k + 2k + · · ·+ nk

nk
·1
n
=

(

1

n

)k
1

n
+

(

2

n

)k
1

n
+· · ·+

(n

n

)k 1

n
,

which shows that xn is a Riemann sum of the function
f (x) = xk on the interval [0, 1] that corresponds to the
partition Pn = {0, 1/n, 2/n, . . . , (n− 1)/n, 1} and samples
tj = j/n, j = 1, 2, . . . , n. The norm of the partition is
‖Pn‖ = 1/n. Since ‖Pn‖ → 0 as n → ∞ and the function f

is integrable on [0, 1], the Riemann sums xn converge to the
integral:

lim
n→∞

xn =

∫ 1

0

xk dx =
xk+1

k + 1

∣

∣

∣

∣

1

x=0

=
1

k + 1
.



Problem 4 Find indefinite integrals and evaluate definite
integrals:

(i)

∫

x2

1− x
dx .

To find the indefinite integral of this rational function, we
expand it into the sum of a polynomial and a simple fraction:

x2

1− x
=

x2 − 1 + 1

1− x
=

x2 − 1

1− x
+

1

1− x
= −x − 1− 1

x − 1
.

Since the domain of the function is (−∞, 1) ∪ (1,∞), the
indefinite integral has different representations on the intervals
(−∞, 1) and (1,∞):

∫

x2

1− x
dx =

{

−x2/2− x − log(1− x) + C1, x < 1,

−x2/2− x − log(x − 1) + C2, x > 1.



Problem 4 Find indefinite integrals and evaluate definite
integrals:

(ii)

∫ π

0

sin2(2x) dx .

To integrate this function, we use a trigonometric formula
1− cos(2α) = 2 sin2 α and a new variable u = 4x :

∫ π

0

sin2(2x) dx =

∫ π

0

1− cos(4x)

2
dx

=

∫ π

0

1− cos(4x)

8
d(4x) =

∫ 4π

0

1− cos u

8
du

=
u − sin u

8

∣

∣

∣

∣

4π

u=0

=
π

2
.



Problem 4 Find indefinite integrals and evaluate definite
integrals:

(iii)

∫

log3 x dx .

To find this indefinite integral, we integrate by parts:
∫

log3 x dx = x log3 x −
∫

x d(log3 x) = x log3 x −
∫

x(log3 x)′ dx

= x log3 x −
∫

3 log2 x dx = x log3 x − 3x log2 x +

∫

x d(3 log2 x)

= x log3 x − 3x log2 x +

∫

6 log x dx

= x log3 x − 3x log2 x + 6x log x −
∫

x d(6 log x)

= x log3 x − 3x log2 x + 6x log x −
∫

6 dx

= x log3 x − 3x log2 x + 6x log x − 6x + C .



Problem 4 Find indefinite integrals and evaluate definite
integrals:

(iv)

∫ 1/2

0

x√
1− x2

dx .

To integrate this function, we introduce a new variable
u = 1− x2:

∫ 1/2

0

x√
1− x2

dx = −1

2

∫ 1/2

0

(1− x2)′√
1− x2

dx

= −1

2

∫ 1/2

0

1√
1− x2

d(1− x2) = −1

2

∫ 3/4

1

1√
u
du

=

∫ 1

3/4

1

2
√
u
du =

√
u
∣

∣

1

u=3/4
= 1−

√
3

2
.



Problem 4 Find indefinite integrals and evaluate definite
integrals:

(v)

∫ 1

0

1√
4− x2

dx .

To integrate this function, we use a substitution x = 2 sin t
(observe that x changes from 0 to 1 when t changes from 0 to
π/6):

∫ 1

0

1√
4− x2

dx =

∫ π/6

0

1
√

4− (2 sin t)2
d(2 sin t)

=

∫ π/6

0

(2 sin t)′
√

4− 4 sin2 t
dt =

∫ π/6

0

2 cos t√
4 cos2 t

dt

=

∫ π/6

0

2 cos t

2 cos t
dt =

∫ π/6

0

1 dx =
π

6
.



Bonus Problem 5 Suppose that a function

p : R → R is locally a polynomial, which means
that for every c ∈ R there exists ε > 0 such that p

coincides with a polynomial on the interval
(c − ε, c + ε). Prove that p is a polynomial.

For any c ∈ R let pc denote a polynomial and εc denote a
positive number such that p(x) = pc(x) for all
x ∈ (c − εc , c + εc). Consider two sets

E+ = {x > 0 | p(x) 6= p0(x)} and E− = {x < 0 | p(x) 6= p0(x)}.
We are going to show that E+ = E− = ∅. This would imply
that p = p0 on the entire real line.



Assume that the set E+ is not empty. Clearly, E+ is bounded
below. Hence d = inf E+ is a well-defined real number. Note
that E+ ⊂ [ε0,∞). Therefore d ≥ ε0 > 0.

Observe that p(x) = p0(x) for x ∈ (0, d) and p(x) = pd(x) for
x ∈ (d − εd , d + εd). The interval (0, d) overlaps with the
interval (d − εd , d + εd). Hence pd coincides with p0 on the
intersection (0, d) ∩ (d − εd , d + εd). Equivalently, the
difference pd − p0 is zero on (0, d) ∩ (d − εd , d + εd). Since
pd − p0 is a polynomial and any nonzero polynomial has only
finitely many roots, we conclude that pd − p0 is identically 0.
Then the polynomials pd and p0 are the same. It follows that
p(x) = p0(x) for x ∈ (0, d + εd) so that d 6= inf E+, a
contradiction. Thus E+ = ∅. Similarly, we prove that the set
E− is empty as well. Since E+ = E− = ∅, the function p

coincides with the polynomial p0.


