Math 412-501 October 20, 2006
Exam 2: Solutions

Problem 1 (50 pts.) Solve the heat equation in a rectangle 0 <z <7, 0 <y < 7,
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subject to the initial condition
u(z,y,0) = (sin 2z + sin 3z) siny
and the boundary conditions

u(0,y,t) = u(m, y,t) =0, u(x,0,t) = u(z, 7, t) = 0.
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Solution: wu(zx,y,t) = sin 2z siny + e~ sin 3z sin y.

We search for the solution of the initial-boundary value problem as a superposition of solutions
u(z,y,t) = ¢(x)h(y)G(t) with separated variables of the heat equation that satisfy the boundary
conditions. Substituting u(x,y,t) = ¢(x)h(y)G(t) into the heat equation, we obtain
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not depend on the other two, it follows that each of these expressions is constant. Hence
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where A and p are constants. Then

depend on one of the variables x,y,t and does

Since any of the expressions
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"= —\o, h' = —uh, G'=—-(\+up)G.

Conversely, if functions ¢, h, and G are solutions of the above ODEs for the same values of A and u,
then u(z,y,t) = ¢(z)h(y)G(t) is a solution of the heat equation.
Substituting u(z,y,t) = ¢(x)h(y)G(t) into the boundary conditions, we get

It is no loss to assume that neither ¢ nor h nor G is identically zero. Then the boundary conditions
are satisfied if and only if ¢(0) = ¢(w) =0, h(0) = h(7) = 0.
To determine ¢, we have an eigenvalue problem

=X, $(0) = o(r) = 0.

This problem has eigenvalues A, = n?, n = 1,2,.... The corresponding eigenfunctions are ¢, (z) =
sin nx.



To determine h, we have the same eigenvalue problem

h" = —puh, h(0) = h(m) = 0.
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Hence the eigenvalues are p,,, = m*, m = 1,2,.... The corresponding eigenfunctions are h,,(y) =

sinmy.

The function G is to be determined from the equation G’ = —(A 4+ ©)G. The general solution of
this equation is G(t) = cpe~ MMt where ¢ is a constant.

Thus we obtain the following solutions of the heat equation satisfying the boundary conditions:

Unm (T, y,t) = e_()‘""'“m)tqbn(x)hm(y) = e~ (M)t Gin pasin my, n,m=12,3,...

A superposition of these solutions is a double series

oo o0

’LL(ZC, Y, t) = Z Z cnme_(n2+m2)t sin nx sin my,

n=1m=1

where ¢, are constants. To determine the coefficients ¢, we substitute the series into the initial
condition u(z,y,0) = (sin 2z + sin 3z) siny:

oo oo
(sin 2z + sin 3z) siny = Z Z Cnm SIN NT Sin MY.

n=1m=1
It is easy to observe that cy1 = c31 = 1 while the other coefficients are equal to 0. Therefore

0

u(z,y,t) = e tsin 2z siny + e 1% sin 3z siny.

Problem 2 (50 pts.) Solve Laplace’s equation inside a quarter-circle 0 < r < 1,
0 < 6 < /2 (in polar coordinates r, ) subject to the boundary conditions

u(r,0) =0, u(r,m/2) =0,  [u(0,0)] <oo,  u(l,0) = f(0).
Solution: u(r,0) = Zw_l car?™sin 2n6, where
4 w/2
cn:—/ f(@)sin2n0dd, n=1,2,...
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Laplace’s equation in polar coordinates (r,0):
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We search for the solution of the boundary value problem as a superposition of solutions u(r, ) =
h(r)¢(0) with separated variables of Laplace’s equation that satisfy the three homogeneous boundary
conditions. Substituting u(r,0) = h(r)¢(0) into Laplace’s equation, we obtain

1 1
W(r)0(0) + - H(r)6(0) + 5 hr)e(6) = 0,
2R (r) + i/ (r) 7¢”(«9)
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Since the left-hand side does not depend on 6 while the right-hand side does not depend on r, it follows
that

h(r) e
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where )\ is a constant. Then
r?h(r) + rh/(r) = Ah(r), ==\

Conversely, if functions h and ¢ are solutions of the above ODEs for the same value of X, then
u(r,0) = h(r)¢(0) is a solution of Laplace’s equation in polar coordinates.
Substituting u(r, 0) = h(r)¢(6) into the homogeneous boundary conditions, we get

h(r)¢(0) =0,  h(r)o(r/2) =0, |h(0)¢(0)] < oco.

It is no loss to assume that neither A nor ¢ is identically zero. Then the boundary conditions are
satisfied if and only if ¢(0) = ¢(7/2) =0, |h(0)| < oc.
To determine ¢, we have an eigenvalue problem

"= xb, (0) = d(n/2) = 0.

This problem has eigenvalues A, = (2n)2, n = 1,2,.... The corresponding eigenfunctions are ¢, (6) =
sin 2n6.

The function A is to be determined from the equation 72h” +rh’ = Ah and the boundary condition
|h(0)] < co. We may assume that X is one of the above eigenvalues so that A > 0. Then the general
solution of the equation is h(r) = c1r* + cor™#, where u = Vv and c1, co are constants. The boundary
condition |h(0)| < oo holds if ¢z = 0.

Thus we obtain the following solutions of Laplace’s equation satisfying the three homogeneous
boundary conditions:

U (7, 0) = 72" sin 2nb, n=12...

A superposition of these solutions is a series
oo
u(r,0) = E ) 12" sin 206,
n=

where ¢1, ¢, ... are constants. Substituting the series into the boundary condition u(1,6) = f(6), we
get

f(0) = ZCX:I ¢p, Sin 2n8.

The right-hand side is a Fourier sine series on the interval [0, 7/2]. Therefore the boundary condition
is satisfied if this is the Fourier sine series of the function f(#) on [0,7/2]. Hence

4 w/2
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Bonus Problem 3 (40 pts.) Consider a regular Sturm-Liouville eigenvalue problem

¢"+Ap=0,  ¢(0)=0, ¢'(1)+he(1) =0,

where h is a real constant.

(i) For what values of h is A = 0 an eigenvalue?

Solution: h = 0.



In the case A = 0, the general solution of the equation ¢” + A¢ = 0 is a linear function ¢(z) =
c1x + c2, where c¢1,cy are constants. Substituting it into the boundary conditions ¢’(0) = 0 and
¢'(1) + ho(1) = 0, we obtain equalities ¢; = 0, ¢1 + h(c1 + ¢2) = 0. They imply that ¢; = heg = 0. If
h # 0, it follows that ¢; = co = 0, hence there are no eigenfunctions with eigenvalue A = 0. If h =0
then ¢(x) =1 is indeed an eigenfunction.

(ii) For what values of h are all eigenvalues positive?

Solution: h > 0.

In the case A < 0, the general solution of the equation ¢’ + A = 0 is
¢(x) = ¢1 cosh px + co sinh px,
where p = V=X > 0 and ¢, ¢o are constants. Note that
¢'(x) = cypsinh px + copucosh px.

The boundary condition ¢'(0) = 0 is satisfied if and only if co = 0. Substituting ¢(z) = ¢1 cosh ux
into the boundary condition ¢'(1) + h¢(1) = 0, we obtain

cipsinh p + hey cosh = 0,

ci(ptanhp+ h) = 0.

If ptanh p # —h, it follows that ¢; = 0, hence there are no eigenfunctions with eigenvalue A\ = —p2.

If ptanh g = —h then ¢(z) = cosh pz is indeed an eigenfunction.

The function f(u) = ptanh p is continuous. It is easy to see that f(0) =0 and f(u) > 0 for u > 0.
Since tanhp — 1 as p — 400, we have that f(u) — +oo as p — +o00. It follows that f takes all
positive values on (0, c0).

By the above the eigenvalue problem has a negative eigenvalue if and only if h < 0. As shown in
the solution to the part (i), A = 0 is an eigenvalue only for h = 0. Hence all eigenvalues are positive
if and only if A > 0.

The fact that for any A > 0 all eigenvalues are nonnegative can also be obtained using the Rayleigh
quotient. If ¢ is an eigenfunction corresponding to an eigenvalue A then
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The boundary conditions imply that
1
—¢¢ ;= #(0)¢'(0) — ¢(1)¢' (1) = hlp(1)[*.
Hence \ > 0 provided that h > 0.

(iii) How many negative eigenvalues can this problem have?

Solution: One negative eigenvalue for h < 0.

Let f(p) = ptanh u. As shown in the solution to the part (i), A < 0 is an eigenvalue if and only
if f(u) = —h, where A = —u?, > 0. Observe that

f' (1) = tanh p + ptanh’ g = tanh g+ ———.
cosh” i



In particular, f’(u) > 0 for u > 0. Since f is continuous, f(0) = 0, and f(u) — +o00 as p — 400,
it follows that f is a one-to-one map of the interval (0, 00) onto itself. Therefore for any h < 0 the
eigenvalue problem has exactly one negative eigenvalue.

(iv) Find an equation for positive eigenvalues.

h
Solution: tan VA = ——.
VA

In the case A > 0, the general solution of the equation ¢” + A = 0 is
¢(x) = ¢1 cos px + co sin pz,
where p = VvV and c1, co are constants. Note that
@' (z) = —cypusin px + copucos p.

The boundary condition ¢'(0) = 0 is satisfied if and only if co = 0. Substituting ¢(x) = ¢; cos pzx into
the boundary condition ¢'(1) + h¢(1) = 0, we obtain

—cipsin o+ hey cos = 0,

c1(hcosp — psinp) = 0.

If hcosp # psin p, it follows that ¢; = 0, hence there are no eigenfunctions with eigenvalue A = p2.
If hcos = psinp then ¢(x) = cos px is indeed an eigenfunction.

Thus hcos VA = VAsin v/ is an equation for positive eigenvalues. Note that for any positive
solution A of this equation we have cosvA # 0. Indeed, if cosv/A = 0 then sinv/A = +1 and
VAsin VA # 0. It follows that for A > 0 this equation is equivalent to

h
tan VA = \ﬁ

(v) Find the asymptotics of A\, as n — oc.

Solution: /A, ~ (n— 1) as n — oc.

Positive eigenvalues are found from the equation tan /X = h/v/A. The function f;(y) = tan p is
continuous, strictly increasing and assumes all real values on each of the intervals (tm—7/2, 1m-+m/2),
m=20,1,2,....

In the case h > 0, the function fo(u) = h/p is continuous and strictly decreasing on (0,00). It
follows that the equation fi(u) = f2(u) has exactly one solution in each of the intervals (0,7/2) and
(mm —7/2,7m+m/2), m = 1,2,.... In this case all eigenvalues are positive, hence m(n — 1) — /2 <
VA, < m(n — 1) + 7/2. Moreover, since tan /A, — 0 as n — oo, it follows that /A, ~ (n — 1)7.

If h =0 then \, = ((nfl)ﬂ')z, n=12....

If h < 0 then A\; < 0 < Ag. In this case the function fo(u) = h/u is negative and strictly increasing
on (0,00). The equation fi(x) = fa(u) has no solution in (0, 7/2) and exactly one solution in each of the
intervals (mm—m/2, 7m+m/2), m = 1,2,.... We conclude that 7(n—1)—7/2 < /A, < 7(n—1)+m/2
for n > 2. Tt follows that v/A, ~ (n — 1)7 in this case as well.



