
Solutions for

homework assignment #2

Problem 1. Show that the equation

∂u

∂t
= k

∂2u

∂x2
+ Q(u, x, t)

is linear if Q(u, x, t) = α(x, t)u + β(x, t) and in addition homogeneous if β(x, t) = 0.

Solution: The equation has the form L(u) = β(x, t), where L(u) = ∂u
∂t − k ∂2u

∂x2 − α(x, t)u. For
any functions u1, u2 and any r1, r2 ∈ R we have L(r1u1 + r2u2) = r1L(u1) + r2L(u2). Hence L is a
linear operator. Then L(u) = β(x, t) is a linear equation. If β(x, t) = 0 then the equation is linear
homogeneous.

Problem 2. Show that a linear equation is homogeneous if and only if 0 is a solution.

Solution: For any linear operator L we have that L(0) = 0. Indeed, take any element u from
the domain of L. Clearly, 0u = 0. The linearity of L implies that L(0) = L(0u) = 0 · L(u) = 0.

A linear homogeneous equation has the form L(u) = 0, where L is a linear operator. By the above
0 is a solution.

A linear equation has the form L(u) = f , where L is a linear operator and f is given. If 0 is a
solution then L(0) = f . But L(0) = 0. Hence f = 0 and the equation is homogeneous.

Problem 3. Consider the following equation:

∂u

∂t
=

∂u

∂x
+ u2.

(i) Find a nonzero steady-state (independent of t) solution u0 in the half-plane x > 0;

(ii) show that 2u0 is not a solution;

(iii) use u0 to show that the equation is not linear.

Solution: (i) Suppose u0 is a steady-state solution in the half-plane x > 0. Then u0(x, t) = v(x),
where v is a solution of the ODE v′(x) + (v(x))2 = 0 in the half-line x > 0. If v(x) 6= 0 then
(1/v)′(x) = −v′(x)/(v(x))2 = 1. Hence either v = 0 or 1/v(x) = x + C, C = const. In particular,
v(x) = (x+C)−1 is a nonzero solution in the half-line x > 0 for any C ≥ 0. For example, take C = 0.
Then u0(x, t) = x−1 is the desired steady-state solution.

(ii) Since u0 is a steady-state solution, we have that ∂u0
∂t = 0 and ∂u0

∂x + u2
0 = 0. Then ∂(2u0)

∂t = 0
while ∂(2u0)

∂x + (2u0)2 = 2∂u0
∂x + 4u2

0 = 2u2
0 6= 0. Therefore 2u0 is not a solution.

(iii) Assume, on the contrary, that the equation can be transformed into the linear form. Since 0
is obviously a solution, the equation is linear homogeneous (see Problem 2). For a linear homogeneous
equation, u0 is a solution if and only if so is 2u0. We have arrived at a contradiction.

Problem 4. Using separation of variables, find a nonzero solution of the equation

∂u

∂t
= k

∂2u

∂x2
− u (k = const > 0).
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Solution: We are looking for a solution of the form u(x, t) = X(x)T (t). Substituting this into
the equation, we obtain

X(x)T ′(t) = kX ′′(x)T (t)−X(x)T (t),

T ′(t)
T (t)

= k
X ′′(x)
X(x)

− 1.

Since the left-hand side does not depend on x while the right-hand side does not depend on t, it follows
that

T ′(t)
T (t)

= k
X ′′(x)
X(x)

− 1 = λ,

where λ is a constant. Then
T ′ = λT, X ′′ = k−1(1 + λ)X.

Conversely, if functions T and X are solutions of the above ODEs for the same value of λ, then
u(x, t) = X(x)T (t) is a solution of the PDE. For example, we may take λ = −1, T (t) = e−t, and
X(x) = x. Hence u(x, t) = e−tx is the desired solution.

Problem 5. Determine the eigenvalues λ of the following eigenvalue problem:

d2φ

dx2
+ λφ = 0, φ(0) = 0,

dφ

dx
(L) = 0.

Analyze three cases: λ > 0, λ = 0, λ < 0. You may assume that the eigenvalues are real.

Solution: λn =
(

(2n+ 1)π
2L

)2

, n = 0, 1, 2, 3, . . .

Detailed solution: Case 1: λ > 0. Here the general solution of the diferential equation is
φ(x) = C1 cosµx + C2 sinµx, where λ = µ2, µ > 0, and C1, C2 are arbitrary constants. Clearly,
φ(0) = C1 and φ′(L) = −C1µ sinµL + C2µ cosµL. Hence the boundary conditions are satisfied if
and only if C1 = 0, C2µ cosµL = 0. A nonzero solution exists if µL = π/2 + nπ, n ∈ Z. That is, if

µ = (2n + 1)π/(2L), n ∈ Z. Since µ > 0, we obtain eigenvalues λn =
(

(2n+1)π
2L

)2
, n = 0, 1, 2, . . . The

corresponding eigenfunctions are φn(x) = sin (2n+1)πx
2L .

Case 2: λ = 0. The general solution of the equation is φ(x) = C1+C2x, where C1, C2 are constants.
Since φ(0) = C1 and φ′(L) = C2, the boundary value problem has only zero solution. Hence 0 is not
an eigenvalue.

Case 3: λ < 0. The general solution of the equation is φ(x) = C1 coshµx+C2 sinhµx, where λ =
−µ2, µ > 0, and C1, C2 are constants. We have that φ(0) = C1 and φ′(L) = C1µ sinhµL+C2µ coshµL.
The boundary conditions are satisfied if and only if C1 = 0 and C2µ coshµL = 0. Since cosh is a
positive function, it follows that the boundary value problem has only zero solution. Hence there are
no negative eigenvalues.

Problem 6. Solve the initial-boundary value problem for the heat equation

∂u

∂t
= k

∂2u

∂x2
, 0 < x < L, t > 0

with the following initial and boundary conditions:
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(i) u(x, 0) = 6 sin
9πx

L
, u(0, t) = u(L, t) = 0;

(ii) u(x, 0) = 3 sin
πx

L
− sin

3πx

L
, u(0, t) = u(L, t) = 0;

(iii) u(x, 0) = 6 + 4 cos
3πx

L
,

∂u

∂t
(0, t) =

∂u

∂t
(L, t) = 0;

(iv) u(x, 0) = −3 cos
8πx

L
,

∂u

∂t
(0, t) =

∂u

∂t
(L, t) = 0.

Solution: (i) u(x, t) = 6 exp
(
−81π2

L2
kt

)
sin

9πx
L

;

(ii) u(x, t) = 3 exp
(
−π

2

L2
kt

)
sin

πx

L
− exp

(
−9π2

L2
kt

)
sin

3πx
L

;

(iii) u(x, t) = 6 + 4 exp
(
−9π2

L2
kt

)
cos

3πx
L

; (iv) u(x, t) = −3 exp
(
−64π2

L2
kt

)
cos

8πx
L

.

Detailed solution: The separation of variables provides the following solution. To solve Prob-
lems 6(i) and 6(ii), we have to expand the initial data into a series∑∞

n=1
cnφn,

where cn are constant coefficients and φn(x) = sin nπx
L are eigenfunctions of the eigenvalue problem

φ′′ = −λφ, φ(0) = φ(L) = 0.

Then the solution is
u(x, t) =

∑∞

n=1
cne

−λnktφn(x),

where λn = (nπ/L)2 are the corresponding eigenvalues.
To solve Problems 6(iii) and 6(iv), we have to expand the initial data into a series∑∞

n=0
cnψn,

where cn are constant coefficients, ψ0 = 1 and ψn(x) = cos nπx
L , n ≥ 1 are eigenfunctions of the

eigenvalue problem
ψ′′ = −λψ, ψ′(0) = ψ′(L) = 0.

Then the solution is
u(x, t) =

∑∞

n=0
cne

−λnktψn(x),

where λn = (nπ/L)2 are the corresponding eigenvalues.
In each case, the initial data are already expanded as we need (moreover, the expansion is finite).

Problem 7. Show that all solutions of Problem 6 uniformly approach steady-state
solutions as t →∞.

Solution: Let u1, u2, u3, u4 be solutions of Problems 6(i), 6(ii), 6(iii), 6(iv), respectively. We
have that |u1(x, t)| ≤ 6 exp

(
−81π2

L2 kt
)
, |u2(x, t)| ≤ 3 exp

(
− π2

L2kt
)

+ exp
(
−9π2

L2 kt
)
, |u3(x, t) − 6| ≤

4 exp
(
−9π2

L2 kt
)
, |u4(x, t)| ≤ 3 exp

(
−64π2

L2 kt
)
.

Hence, as t→∞, the solutions u1, u2, u4 of the heat equation uniformly approach the steady-state
solution u = 0 while u3 approaches the steady-state solution u = 6.

3


