
Math 412-501

Theory of Partial Differential Equations

Lecture 10: Fourier series (continued).
Gibbs’ phenomenon.



Fourier series

a0 +
∞

∑

n=1

an cos
nπx

L
+

∞
∑

n=1

bn sin
nπx

L

To each integrable function f : [−L, L] → R we
associate a Fourier series such that

a0 =
1

2L

∫ L

−L

f (x) dx

and for n ≥ 1,

an =
1

L

∫ L

−L

f (x) cos
nπx

L
dx ,

bn =
1

L

∫ L

−L

f (x) sin
nπx

L
dx .



Convergence theorem

Suppose f : [−L, L] → R is a piecewise smooth

function.

Let F : R → R be the 2L-periodic extension of f .

Theorem The Fourier series of the function f

converges everywhere. The sum at a point x is
equal to F (x) if F is continuous at x . Otherwise
the sum is equal to

F (x−) + F (x+)

2
.



Function and its Fourier series



Fourier sine and cosine series

Suppose f (x) is an integrable function on [0, L].
The Fourier sine series of f

∑∞

n=1
Bn sin nπx

L

and the Fourier cosine series of f

A0 +
∑∞

n=1
An cos nπx

L

are defined as follows:

Bn = 2
L

∫ L

0

f (x) sin nπx
L

dx ;

A0 = 1
L

∫ L

0

f (x) dx , An = 2
L

∫ L

0

f (x) cos nπx
L

dx , n ≥ 1.



Proposition (i) The Fourier series of an odd
function f : [−L, L] → R coincides with its Fourier
sine series on [0, L].

(ii) The Fourier series of an even function
f : [−L, L] → R coincides with its Fourier cosine
series on [0, L].

Conversely, the Fourier sine series of a function
f : [0, L] → R is the Fourier series of its odd

extension to [−L, L].
The Fourier cosine series of f is the Fourier series

of its even extension to [−L, L].



Example

f (x) = x

• Fourier series (−L ≤ x ≤ L)

a0 = 1
2L

∫ L

−L

x dx = 0, an = 1
L

∫ L

−L

x cos nπx
L

dx = 0.

bn = 1
L

∫ L

−L

x sin nπx
L

dx = L
π

2

∫ L

−L

πx
L

sin nπx
L

d(πx
L

)

= L
π

2

∫

π

−π

y sin ny dy = − L
nπ

2

∫

π

−π

y d(cos ny)

= − L
nπ

2 y cos ny

∣

∣

∣

π

−π

+ L
nπ

2

∫

π

−π

cos ny dy

= − L
nπ

2 · 2π cos nπ = (−1)n+1 2L
nπ

.



Fourier series of f (x) = x



For any −L < x < L,

x =
2L

π

∑∞

n=1

(−1)n+1

n
sin

nπx

L

For x = L/2 we obtain:

L

2
=

2L

π

∑∞

n=1

(−1)n+1

n
sin

nπ

2
.

=⇒
π

4
= 1 −

1

3
+

1

5
−

1

7
+ · · ·



f (x) = x

• Fourier sine series (0 ≤ x ≤ L) is the same as
the Fourier series on −L ≤ x ≤ L.

• Fourier cosine series (0 ≤ x ≤ L)

A0 =
1

L

∫ L

0

x dx =
1

L
·
L2

2
=

L

2
.

For n ≥ 1,

An =
2

L

∫ L

0

x cos
nπx

L
dx =

2L

(nπ)2
(cos nπ − 1).

An = 0 if n > 0 is even; An = − 4L
(nπ)2 if n is odd.



Fourier cosine series of f (x) = x



For any 0 ≤ x ≤ L,

x =
L

2
−

4L

π2

∑∞

m=1

1

(2m − 1)2
cos

(2m − 1)πx

L

For x = L we obtain:

L =
L

2
−

4L

π2

∑∞

m=1

1

(2m − 1)2
cos(2m − 1)π.

=⇒
π2

8
= 1 +

1

32
+

1

52
+

1

72
+ · · ·



Another example

f (x) = 100

• Fourier series (−L ≤ x ≤ L) coincides with f (x).

• Fourier cosine series (0 ≤ x ≤ L) also coincides
with f (x).

• Fourier sine series (0 ≤ x ≤ L)

Bn =
2

L

∫ L

0

100 sin
nπx

L
dx =

200

nπ
(1 − cos nπ).

Bn = 0 if n is even; Bn = 400
nπ

if n is odd.



Odd extension



Fourier sine series of f (x) = 100



For any 0 < x < L,

100 =
400

π

∑∞

m=1

1

2m − 1
sin

(2m − 1)πx

L

Partial sums:

p1(x) = 400
π

sin πx
L

,

p2(x) = 400
π

(

sin πx
L

+ 1
3 sin 3πx

L

)

,

p3(x) = 400
π

(

sin πx
L

+ 1
3 sin 3πx

L
+ 1

5 sin 5πx
L

)

, . . .

lim
n→∞

pn(x) = 100 for 0 < x < L, 2L < x < 3L, . . .

lim
n→∞

pn(x) = −100 for −L < x < 0, L < x < 2L, ...



p1(x)



p2(x)



pn(x), 1 ≤ n ≤ 6.



Gibbs’ phenomenon

The partial sum pn(x) attains its maximal value vn

on the interval 0 ≤ x ≤ L at two points x+
n , x−

n

such that x+
n → L and x−

n → 0 as n → ∞.

Actually, x−
n = L

2n
, x+

n = L − L
2n

.

The maximal overshoot vn = pn(x
±
n ) satisfies

v1 > v2 > v3 > . . . and lim
n→∞

vn = v∞> 100.

Actually, v∞ =
200

π

∫

π

0

sin y

y
dy ≈ 117.898

The Gibbs phenomenon occurs for any piecewise
smooth function at any discontinuity. The ultimate
overshoot rate of ≈ 9% of the jump is universal.



Term-by-term differentiation

Fourier cosine series of f1(x) = x :

L

2
−

4L

π2

∑∞

m=1

1

(2m − 1)2
cos

(2m − 1)πx

L

Fourier sine series of f2(x) = 1:

4

π

∑∞

m=1

1

2m − 1
sin

(2m − 1)πx

L

The second series can be obtained by term-by-term
differentiation of the first series.
And, by the way, f ′1(x) = f2(x).



Theorem Suppose that a function f : [−L, L] → R

is continuous, piecewise smooth, and f (−L) = f (L).
Then the Fourier series of f ′ (on [−L, L]) can be

obtained via term-by-term differentiation of the
Fourier series of f .

Let f : [0, L] → R be a continuous function and
F : [−L, L] → R be its even extension. Then F is
also continuous and F (−L) = F (L). If f is
piecewise smooth, so is F . Moreover, F ′ is the odd
extension of f ′ to [−L, L].

Corollary Let f : [0, L] → R be a continuous,
piecewise smooth function. Then the term-by-term
differentiation of the Fourier cosine series of f yields
the Fourier sine series of f ′.



Example. Find the Fourier series of f (x) = x2.

x2 ∼ a0 +
∑∞

n=1
an cos nπx

L
+

∑∞

n=1
bn sin nπx

L

Term-by-term differentiation yields

−
∑∞

n=1
an

nπ

L
sin nπx

L
+

∑∞

n=1
bn

nπ

L
cos nπx

L
.

By the theorem, this should be the Fourier series of
f ′(x) = 2x , which is

2x ∼ 4L
π

∑∞

n=1

(−1)n+1

n
sin nπx

L
.

Hence bn = 0 and an = (−1)n 4L2

n2
π

2 for n ≥ 1.

It remains to find a0 = 1
2L

∫ L

−L

x2 dx = L2

3 .



Term-by-term integration

Theorem Suppose that a piecewise continuous
function f : [−L, L] → R has the Fourier series

a0 +
∑∞

n=1
an cos nπx

L
+

∑∞

n=1
bn sin nπx

L
.

Then
∫ x

c

f (y) dy =

∫ x

c

a0 dy

+
∞

∑

n=1

∫ x

c

an cos nπy

L
dy +

∞
∑

n=1

∫ x

c

bn sin nπy

L
dy .

for any interval [c , x ] ⊂ [−L, L].

Term-by-term integration is always possible

but the result need not be a Fourier series.


