Math 412-501
Theory of Partial Differential Equations
Lecture 10: Fourier series (continued). Gibbs' phenomenon.

Fourier series

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
$$

To each integrable function $f:[-L, L] \rightarrow \mathbb{R}$ we associate a Fourier series such that

$$
a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x
$$

and for $n \geq 1$,

$$
\begin{aligned}
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{aligned}
$$

Convergence theorem

Suppose $f:[-L, L] \rightarrow \mathbb{R}$ is a piecewise smooth function.
Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be the $2 L$-periodic extension of f.
Theorem The Fourier series of the function f converges everywhere. The sum at a point x is equal to $F(x)$ if F is continuous at x. Otherwise the sum is equal to

$$
\frac{F(x-)+F(x+)}{2}
$$

Function and its Fourier series

Fourier sine and cosine series

Suppose $f(x)$ is an integrable function on $[0, L]$.
The Fourier sine series of f

$$
\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}
$$

and the Fourier cosine series of f

$$
A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}
$$

are defined as follows:

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

$A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x, \quad A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x, \quad n \geq 1$.

Proposition (i) The Fourier series of an odd function $f:[-L, L] \rightarrow \mathbb{R}$ coincides with its Fourier sine series on $[0, L]$.
(ii) The Fourier series of an even function $f:[-L, L] \rightarrow \mathbb{R}$ coincides with its Fourier cosine series on $[0, L]$.

Conversely, the Fourier sine series of a function $f:[0, L] \rightarrow \mathbb{R}$ is the Fourier series of its odd extension to $[-L, L]$.

The Fourier cosine series of f is the Fourier series of its even extension to $[-L, L]$.

Example

$$
f(x)=x
$$

- Fourier series $(-L \leq x \leq L)$

$$
\begin{gathered}
a_{0}=\frac{1}{2 L} \int_{-L}^{L} x d x=0, \quad a_{n}=\frac{1}{L} \int_{-L}^{L} x \cos \frac{n \pi x}{L} d x=0 . \\
b_{n}=\frac{1}{L} \int_{-L}^{L} x \sin \frac{n \pi x}{L} d x=\frac{L}{\pi^{2}} \int_{-L}^{L} \frac{\pi x}{L} \sin \frac{n \pi x}{L} d\left(\frac{\pi x}{L}\right) \\
=\frac{L}{\pi^{2}} \int_{-\pi}^{\pi} y \sin n y d y=-\frac{L}{n \pi^{2}} \int_{-\pi}^{\pi} y d(\cos n y) \\
=-\left.\frac{L}{n \pi^{2}} y \cos n y\right|_{-\pi} ^{\pi}+\frac{L}{n \pi^{2}} \int_{-\pi}^{\pi} \cos n y d y \\
=-\frac{L}{n \pi^{2}} \cdot 2 \pi \cos n \pi=(-1)^{n+1} \frac{2 L}{n \pi} .
\end{gathered}
$$

Fourier series of $f(x)=x$

For any $-L<x<L$,

$$
x=\frac{2 L}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n \pi x}{L}
$$

For $x=L / 2$ we obtain:

$$
\begin{aligned}
& \frac{L}{2}=\frac{2 L}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n \pi}{2} . \\
& \Longrightarrow \quad \frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots .
\end{aligned}
$$

$f(x)=x$

- Fourier sine series $(0 \leq x \leq L)$ is the same as the Fourier series on $-L \leq x \leq L$.
- Fourier cosine series $(0 \leq x \leq L)$

$$
A_{0}=\frac{1}{L} \int_{0}^{L} x d x=\frac{1}{L} \cdot \frac{L^{2}}{2}=\frac{L}{2}
$$

For $n \geq 1$,

$$
A_{n}=\frac{2}{L} \int_{0}^{L} x \cos \frac{n \pi x}{L} d x=\frac{2 L}{(n \pi)^{2}}(\cos n \pi-1)
$$

$A_{n}=0$ if $n>0$ is even; $A_{n}=-\frac{4 L}{(n \pi)^{2}}$ if n is odd.

Fourier cosine series of $f(x)=x$

For any $0 \leq x \leq L$,

$$
x=\frac{L}{2}-\frac{4 L}{\pi^{2}} \sum_{m=1}^{\infty} \frac{1}{(2 m-1)^{2}} \cos \frac{(2 m-1) \pi x}{L}
$$

For $x=L$ we obtain:

$$
\begin{aligned}
L= & \frac{L}{2}-\frac{4 L}{\pi^{2}} \sum_{m=1}^{\infty} \frac{1}{(2 m-1)^{2}} \cos (2 m-1) \pi \\
& \Longrightarrow \quad \frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots
\end{aligned}
$$

Another example

$f(x)=100$

- Fourier series $(-L \leq x \leq L)$ coincides with $f(x)$.
- Fourier cosine series $(0 \leq x \leq L)$ also coincides with $f(x)$.
- Fourier sine series $(0 \leq x \leq L)$

$$
B_{n}=\frac{2}{L} \int_{0}^{L} 100 \sin \frac{n \pi x}{L} d x=\frac{200}{n \pi}(1-\cos n \pi)
$$

$B_{n}=0$ if n is even; $B_{n}=\frac{400}{n \pi}$ if n is odd.

Odd extension

Fourier sine series of $f(x)=100$

For any $0<x<L$,

$$
100=\frac{400}{\pi} \sum_{m=1}^{\infty} \frac{1}{2 m-1} \sin \frac{(2 m-1) \pi x}{L}
$$

Partial sums:
$p_{1}(x)=\frac{400}{\pi} \sin \frac{\pi x}{L}$,
$p_{2}(x)=\frac{400}{\pi}\left(\sin \frac{\pi x}{L}+\frac{1}{3} \sin \frac{3 \pi x}{L}\right)$,
$p_{3}(x)=\frac{400}{\pi}\left(\sin \frac{\pi x}{L}+\frac{1}{3} \sin \frac{3 \pi x}{L}+\frac{1}{5} \sin \frac{5 \pi x}{L}\right), \ldots$
$\lim _{n \rightarrow \infty} p_{n}(x)=100$ for $0<x<L, 2 L<x<3 L, \ldots$
$\lim _{n \rightarrow \infty} p_{n}(x)=-100$ for $-L<x<0, L<x<2 L, \ldots$

Gibbs' phenomenon

The partial sum $p_{n}(x)$ attains its maximal value v_{n} on the interval $0 \leq x \leq L$ at two points x_{n}^{+}, x_{n}^{-} such that $x_{n}^{+} \rightarrow L$ and $x_{n}^{-} \rightarrow 0$ as $n \rightarrow \infty$.
Actually, $x_{n}^{-}=\frac{L}{2 n}, x_{n}^{+}=L-\frac{L}{2 n}$.
The maximal overshoot $v_{n}=p_{n}\left(x_{n}^{ \pm}\right)$satisfies $v_{1}>v_{2}>v_{3}>\ldots$ and $\lim _{n \rightarrow \infty} v_{n}=v_{\infty}>100$.
Actually, $v_{\infty}=\frac{200}{\pi} \int_{0}^{\pi} \frac{\sin y}{y} d y \approx 117.898$
The Gibbs phenomenon occurs for any piecewise smooth function at any discontinuity. The ultimate overshoot rate of $\approx 9 \%$ of the jump is universal.

Term-by-term differentiation

Fourier cosine series of $f_{1}(x)=x$:

$$
\frac{L}{2}-\frac{4 L}{\pi^{2}} \sum_{m=1}^{\infty} \frac{1}{(2 m-1)^{2}} \cos \frac{(2 m-1) \pi x}{L}
$$

Fourier sine series of $f_{2}(x)=1$:

$$
\frac{4}{\pi} \sum_{m=1}^{\infty} \frac{1}{2 m-1} \sin \frac{(2 m-1) \pi x}{L}
$$

The second series can be obtained by term-by-term differentiation of the first series.
And, by the way, $f_{1}^{\prime}(x)=f_{2}(x)$.

Theorem Suppose that a function $f:[-L, L] \rightarrow \mathbb{R}$ is continuous, piecewise smooth, and $f(-L)=f(L)$.

Then the Fourier series of f^{\prime} (on $[-L, L]$) can be obtained via term-by-term differentiation of the Fourier series of f.

Let $f:[0, L] \rightarrow \mathbb{R}$ be a continuous function and $F:[-L, L] \rightarrow \mathbb{R}$ be its even extension. Then F is also continuous and $F(-L)=F(L)$. If f is piecewise smooth, so is F. Moreover, F^{\prime} is the odd extension of f^{\prime} to $[-L, L]$.
Corollary Let $f:[0, L] \rightarrow \mathbb{R}$ be a continuous, piecewise smooth function. Then the term-by-term differentiation of the Fourier cosine series of f yields the Fourier sine series of f^{\prime}.

Example. Find the Fourier series of $f(x)=x^{2}$.

$$
x^{2} \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
$$

Term-by-term differentiation yields

$$
-\sum_{n=1}^{\infty} a_{n} \frac{n \pi}{L} \sin \frac{n \pi x}{L}+\sum_{n=1}^{\infty} b_{n} \frac{n \pi}{L} \cos \frac{n \pi x}{L} .
$$

By the theorem, this should be the Fourier series of $f^{\prime}(x)=2 x$, which is

$$
2 x \sim \frac{4 L}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n \pi x}{L} .
$$

Hence $b_{n}=0$ and $a_{n}=(-1)^{n} \frac{4 L^{2}}{n^{2} \pi^{2}}$ for $n \geq 1$.
It remains to find $a_{0}=\frac{1}{2 L} \int_{-L}^{L} x^{2} d x=\frac{L^{2}}{3}$.

Term-by-term integration

Theorem Suppose that a piecewise continuous function $f:[-L, L] \rightarrow \mathbb{R}$ has the Fourier series

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} .
$$

Then

$$
\begin{gathered}
\int_{c}^{x} f(y) d y=\int_{c}^{x} a_{0} d y \\
+\sum_{n=1}^{\infty} \int_{c}^{x} a_{n} \cos \frac{n \pi y}{L} d y+\sum_{n=1}^{\infty} \int_{c}^{x} b_{n} \sin \frac{n \pi y}{L} d y .
\end{gathered}
$$

for any interval $[c, x] \subset[-L, L]$.
Term-by-term integration is always possible but the result need not be a Fourier series.

