Math 412-501
Theory of Partial Differential Equations

Lecture 3:
Steady-state solutions of the heat equation.
D’Alembert’s solution of the wave equation.



One-dimensional heat equation
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Ko = Ko(x), ¢ = c(x), p = p(x), @ = Q(x,1).

Assuming Kjy, c, p are constant (uniform rod) and
Q = 0 (no heat sources), we obtain
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where k = Ky(cp)™L.



Initial-boundary value problem
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Initial condition: u(x,0) = f(x), where
f:[0,L] — R.

Boundary conditions: u(0,t) = u(t),

%(L, t) = ¢o(t), where uy, ¢, : [0, T] — R.

Initial-boundary value problem = PDE + initial
condition(s) + boundary conditions




Steady-state solutions
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A solution u of the heat equation is called an
equilibrium (or steady-state) solution if it does
not depend on time, that is, u(x, t;) = u(x, t) for
any 0 < x<Land 0< t; < .

Hence u(x, t) = v(x), where v : [0, L] — R.
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In particular, i 0. Also, 8X(X t) = dx( X).
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If a steady-state solution exists, then @ does not
depend on time.

Suppose u(x,t) = v(x) is a steady-state solution,
then

du 2(K@)+Q, 0<x<L 0<t<oo

d dv
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If a steady-state solution satisfies a boundary
condition of the first or second kind, then the
boundary condition is time-independent.

u(0,t) = w(t) = u; = const

8_i(0’ t) = ¢1(t) = ¢1 = const

This is not always so for boundary conditions of the
third kind. For example, if u(0,t) = uy = const and

9u(0,t) = 0, then the boundary condition

%(07 t) = h(t)(u(O, t) — Uo)

is satisfied for an arbitrary function h.
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Conjecture Assume that boundary conditions are
time-independent and there exists a steady-state
solution satisfying them. Then an arbitrary solution
u(x, t) of the initial-boundary value problem
(uniformly) approaches a steady-state solution as
t — o0.
lim u(x,t) = u(x)
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Initial value problem
(Kot + Q =0, u(0)= G, v'(0)=G

has a unique solution
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Assuming Ky = const, we have

u(x) = G + Clx—/ox (Kio/on Q(f)d£> dn

Assuming Ky = const and @ = 0, we have
u(x) = G + Gix




ou 0%u
— =k — < x <L <
9t Bl 0<x<I[, 0<t<

General steady-state solution: u(x,t) = Gy + Cix,
where (g, (7 are constant.

Boundary conditions: u(0,t) = w1, u(L, t) = w,.
G=u, G+ GL=w = u(x,t)=u + 22X
(unique equilibrium)

Boundary conditions: 24(0, t) = 24(L, t) = 0.
G=0 = u(x,t)= (G

(non-unique equilibrium)
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General steady-state solution: u(x,t) = Gy + Cix,
where (y, (7 are constant.

0<x<L 0<t<oo

Boundary conditions: 24(0, t) = 0, 94(L, t) = L.

(; =0, (1 =1 = no equilibrium



Homework
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Boundary conditions: 24(0, t) = u(0,t) — up,
Bu(L,t) =a.

Suppose Ky = const and Q(x, t)/Ky = x,
0<x<L, t>0.

Problem. Find the steady-state solution of the
boundary problem.



Solution

Let u be a steady-state solution of the heat

equation. Then u(x,t) = v(x), where

v : [0, L] — R satisfies the following ODE:
(Kov') + Q =0.

Since Ky = const > 0, it follows that

v+ Q/Ky = 0.

Hence v/(x) +x =0 for 0 < x < L.

Vi(x) = —x = V/(x) = —X?z + G =

v(x) = —%3 + Gix + G,

where (i, G, are constants.



V(x) = —x2/2 + (,
vix)=—x3/6+ Cx+ G, 0<x<L

Boundary conditions are satisfied if
v/(0) = v(0) — yp and V/(L) = «.

That is, if (; = G — wy, —L2/2 + (1 = .
It follows that C; = o+ L2/2, G = o+ [?/2 + up.
unique solution:

u(x,t) = —x3/6 + (o + L?/2)x + a+ L2/2 + ug
= —x3/6+ (a+ L?/2)(x + 1) + up.



New equation
0%u B
owdz
Domain: a; < w < ay, by < z < b,.

(we allow intervals [a1, ap] and [by, by] to be infinite
or semi-infinite)
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u(w,z) = B(z)+ C(w)| (general solution)

0, u=u(w,z)




Wave equation
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Change of independent variables:
w=Xx+ct, z=Xx—ct.

How does the equation look in new coordinates?
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Wave equation in new coordinates: =0.
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u(x,t) =

General solution:

B(x — ct) + C(x + ct)

(d’Alembert, 1747)




