Math 412-501
Theory of Partial Differential Equations

Lecture 6: Separation of variables.



How do we solve a linear homogeneous PDE?
Step 1: Find some solutions.

Step 2: Form linear combinations of solutions
obtained on Step 1.

Step 3: Show that every solution can be
approximated by solutions obtained on Step 2.

Similarly, we solve a linear homogeneous PDE with
linear homogeneous boundary conditions (boundary
problem).

One way to complete Step 1: the method of
separation of variables.



Separation of variables

The method applies to certain linear PDEs. It is
used to find some solutions.

Basic idea: to find a solution of the PDE (function
of many variables) as a combination of several
functions, each depending only on one variable.

For example, u(x, t) = B(x) + C(t) or
u(x,t) = B(x)C(t).
The first example works perfectly for one equation:
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The second example proved useful for many
equations.



Heat equation
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Suppose u(x,t) = ¢(x)G(t). Then
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Divide both sides by k - ¢(x) - G(t) = k - u(x, t):
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It follows that
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A is called the separation constant. The variables
have been separated:
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Proposition Suppose ¢ and G are solutions of the
above ODEs for the same value of X\. Then

u(x, t) = ¢(x)G(t) is a solution of the heat
equation.

Example. u(x,t) = e *sinx.
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General solution: G(t) = Goe **, Gy = const.
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Three cases: A >0, A =0, A <0.

Case 1: A >0. Then A\ = 2, where yu > 0.
o(x) = G cos ux + Gysinux, Gy, G; = const.
Case 22 A=0. ¢(x) = G + Gx.

Case 3: A< 0. Then A = —u?, where y > 0.
¢(X) = e + Goe M,



Theorem For any (;, (; € R and i > 0,
the functions

up(x,t) = e *t(C cos ux 4+ Cysin pux),
w(x, t) = G+ Gx,
u(x,t) = ekuzt(Cle“X + Ge )
are solutions of the heat equation
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Wave equation
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Suppose u(x,t) = ¢(x)G(t). Then
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Divide both sides by ¢ - ¢(x) - G(t) = ¢? - u(x, t):
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It follows that
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The variables have been separated:
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Proposition Suppose ¢ and G are solutions of the
above ODEs for the same value of A\. Then

u(x, t) = ¢(x)G(t) is a solution of the wave
equation.

Example. u(x,t) = cosct - sin x.



Theorem For any (i, G, D1, D, € R and 1 > 0,
the functions

up(x,t) = (Dycoscut+ Dysincput)
X (Cy cos pux + Cysin pux),
up(x,t) = (D1 + Dot)(G + Gox),
u_(x,t) = (Dye*t 4+ Dye= ) (Cret™ + Ce )
are solutions of the wave equation
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Laplace’s equation
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where A = const. Then u(x,y) = ¢(x)h(y) is a
solution of Laplace’s equation.

Proof: 2% = ¢"(x)h(y) = =Ad(x)h(y),
%’é = ¢(x)h"(y) = Ap(x)h(y). Hence Au=0.

Example. u(x,y) = e’sinx.



Boundary value problem for the heat equation
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u(0,t) = u(L,t) = 0.

0<x<IL,

We are looking for solutions u(x,t) = ¢(x)G(t).
PDE holds if
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for the same constant ).
Boundary conditions hold if

¢(0) = o(L) = 0.



Boundary value problem:
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¢(0) = ¢(L) = 0.
There is an obvious solution: 0.
When is it not unique?

If for some value of A the boundary value problem
has a nonzero solution ¢, then this \ is called an
eigenvalue and ¢ is called an eigenfunction.

The eigenvalue problem is to find all eigenvalues
(and corresponding eigenfunctions).



