## Math 412-501 Theory of Partial Differential Equations

Lecture 2-1: Higher-dimensional heat equation.

#### PDEs: two variables

heat equation: 
$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

wave equation: 
$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

Laplace's equation: 
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

#### PDEs: three variables

heat equation: 
$$\frac{\partial u}{\partial t} = k \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

wave equation: 
$$\frac{\partial^2 u}{\partial t^2} = c^2 \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

Laplace's equation: 
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

### One-dimensional heat equation

Describes heat conduction in a rod:

$$c\rho \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left( K_0 \frac{\partial u}{\partial x} \right) + Q$$

$$K_0 = K_0(x), c = c(x), \rho = \rho(x), Q = Q(x, t).$$

Assuming  $K_0$ , c,  $\rho$  are constant (uniform rod) and Q = 0 (no heat sources), we obtain

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

where  $k = K_0(c\rho)^{-1}$ .

#### Heat conduction in three dimensions

u(x, y, z, t) =temperature at point (x, y, z) at time te(x, y, z, t) = thermal energy density (thermal energy per unit volume)

Q(x, y, z, t) = density of heat sources (heat energy per unit volume generated per unit time)

 $\phi(x, y, z, t)$  = heat flux  $\vec{\phi}(x, y, z, t)$  is a vector field

thermal energy flowing per unit surface per unit time =  $\vec{\phi}(x, y, z, t) \cdot \vec{\mathbf{n}}(x, y, z)$ , where  $\mathbf{n}(x, y, z)$  is the unit normal vector of the surface

#### **Heat flux**



c(x, y, z) = specific heat or heat capacity (the heat energy supplied to a unit mass of a substance to raise its temperature one unit)

 $\rho(x, y, z) = \text{mass density (mass per unit volume)}$ 

Thermal energy in a volume is equal to the energy it takes to raise the temperature of the volume from a reference temperature (zero) to its actual temperature.

$$e(x, y, z, t) \cdot \Delta V = c(x, y, z)u(x, y, z, t) \cdot \rho(x, y, z) \cdot \Delta V$$
$$e(x, y, z, t) = c(x, y, z)\rho(x, y, z)u(x, y, z, t)$$



Four quantities: u, e, Q,  $\phi$ . Heat equation should involve only two: u and Q.

Heat equation is derived from two physical laws:

- conservation of heat energy,
- Fourier's low of heat conduction.

# **Conservation of heat energy** (in a volume in a period of time):

```
change of<br/>heatheat energy<br/>=<br/>flowing across<br/>boundaryheat energy<br/>generated<br/>inside
```

```
rate of heat energy heat energy change of = flowing across + generated heat boundary inside per energy per unit time heat unit time
```



subregion R

heat energy:

$$\iiint_R e(x, y, z, t) dx dy dz = \iiint_R e dV$$

rate of change of heat energy:

$$\frac{\partial}{\partial t} \left( \iiint_{R} e \, dV \right) = \frac{\partial}{\partial t} \left( \iiint_{R} c \rho u \, dV \right)$$



subregion R

heat energy flowing across boundary per unit time:

$$-\oint \oint_{\partial R} \vec{\phi} \cdot \mathbf{n} \, dS,$$

where **n** is the unit outward normal vector of  $\partial R$ .

heat energy generated inside per unit time:

$$\iiint_{R} Q \, dV$$

$$\frac{\partial}{\partial t} \left( \iiint_{R} c \rho u \, dV \right) = - \oint \oint_{\partial R} \vec{\phi} \cdot \mathbf{n} \, dS + \iiint_{R} Q \, dV$$

$$\iiint_{R} c \rho \frac{\partial u}{\partial t} \, dV = - \oint \oint_{\partial R} \vec{\phi} \cdot \mathbf{n} \, dS + \iiint_{R} Q \, dV$$

$$\iiint_{R} \nabla \cdot \vec{\phi} \, dV = \oint \oint_{\partial R} \vec{\phi} \cdot \mathbf{n} \, dS$$

where 
$$\vec{\phi} = (\phi_x, \phi_y, \phi_z)$$
,  $\nabla \cdot \vec{\phi} = \frac{\partial \phi_x}{\partial x} + \frac{\partial \phi_y}{\partial y} + \frac{\partial \phi_z}{\partial z}$ .

(Gauss' formula) (divergence theorem)

 $\nabla \cdot \vec{\phi}$  is called the **divergence** of vector field  $\phi$ .



$$\iiint_R c\rho \frac{\partial u}{\partial t} dV = -\iiint_R \nabla \cdot \vec{\phi} dV + \iiint_R Q dV$$

Since R is an arbitrary subregion,

$$\boxed{c\rho\frac{\partial u}{\partial t} = -\nabla\cdot\vec{\phi} + Q}$$

#### Fourier's law of heat conduction:

$$\vec{\phi} = -K_0 \, \nabla u$$
,

where  $K_0 = K_0(x, u)$  is the thermal conductivity and  $\nabla u = (\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z})$  is the gradient of u.

**Heat equation:** 
$$c\rho \frac{\partial u}{\partial t} = \nabla \cdot (K_0 \nabla u) + Q$$

Assuming  $K_0 = \text{const}$ , we have

$$c\rho \frac{\partial u}{\partial t} = K_0 \nabla^2 u + Q,$$

where  $\nabla^2 u = \nabla \cdot (\nabla u) = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial v^2} + \frac{\partial^2 u}{\partial z^2}$  is the **Laplacian** of u.

Assuming  $K_0$ , c,  $\rho = \text{const}$  (uniform medium) and Q = 0 (no heat sources), we obtain

$$\boxed{\frac{\partial u}{\partial t} = k \, \nabla^2 u,}$$

where  $k = K_0(c\rho)^{-1}$  is called the *thermal diffusivity*.



#### **Notation**

Each function  $f: \mathbb{R}^3 \to \mathbb{R}$  is assigned the gradient (a vector field) and the Laplacian (a function). Each vector field  $\vec{\phi}: \mathbb{R}^3 \to \mathbb{R}^3$  is assigned the divergence (a function).

"physical" notation: 
$$\nabla = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$$

**gradient:** 
$$\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})$$

divergence: 
$$\nabla \cdot \vec{\phi} = \frac{\partial \phi_x}{\partial x} + \frac{\partial \phi_y}{\partial y} + \frac{\partial \phi_z}{\partial z}$$

**Laplacian:** 
$$\nabla^2 f = \nabla \cdot (\nabla f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

"mathematical" notation:

**gradient:** grad 
$$f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})$$

**divergence:** 
$$\operatorname{div} \vec{\phi} = \frac{\partial \phi_x}{\partial x} + \frac{\partial \phi_y}{\partial y} + \frac{\partial \phi_z}{\partial z}$$

**Laplacian:** 
$$\Delta f = \operatorname{div}(\operatorname{grad} f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

