Math 412-501
Theory of Partial Differential Equations

Lecture 2-1:
Higher-dimensional heat equation.



PDEs: two variables

heat equation:

wave equation:

Laplace's equation:
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PDEs: three variables

heat equation:

wave equation:

Laplace's equation:
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One-dimensional heat equation

Describes heat conduction in a rod:
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Ko = Ko(x), ¢ = c(x), p = p(x), Q@ = Q(x, t).

Assuming Kj, c, p are constant (uniform rod) and
Q = 0 (no heat sources), we obtain
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where k = Ky(cp)~L.



Heat conduction in three dimensions
u(x,y,z,t) =
temperature at point (x, y, z) at time t

e(x,y, z, t) = thermal energy density (thermal
energy per unit volume)

Q(x, y, z, t) = density of heat sources (heat energy
per unit volume generated per unit time)
o(x,y,z,t) = heat flux

5(x,y, z,t) is a vector field

thermal energy flowing per unit surface per unit
time = ¢(x, y,z,t) - n(x, y, z), where n(x, y, z) is
the unit normal vector of the surface



Heat flux

VU



c(x,y, z) = specific heat or heat capacity (the heat
energy supplied to a unit mass of a substance to
raise its temperature one unit)

p(x,y,z) = mass density (mass per unit volume)

Thermal energy in a volume is equal to the energy it
takes to raise the temperature of the volume from a
reference temperature (zero) to its actual
temperature.

e(x,y,z,t)- AV = c(x,y, z)u(x,y,z,t) - p(x,y,z) - AV

e(X7 y? Z7 t) - C(X7y7 Z)p(X7 y? Z)U(X7 y7 Z) t)




Four quantities: u, e, @, ¢.
Heat equation should involve only two: v and Q.
Heat equation is derived from two physical laws:

e conservation of heat energy,

e Fourier's low of heat conduction.



Conservation of heat energy (in a volume in a

period of time):

change of heat energy heat energy
heat = flowing across + generated
energy boundary inside

rate of heat energy heat energy
change of = flowing across + generated
heat boundary inside per
energy per unit time unit time




subregion R

heat energy:
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rate of change of heat energy:
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subregion R

heat energy flowing across boundary per unit time:
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where n is the unit outward normal vector of OR.

heat energy generated inside per unit time:
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(Gauss’ formula) (divergence theorem)

V- 5 is called the divergence of vector field ¢.
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Since R is an arbitrary subregion,
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Fourier’'s law of heat conduction:
¢ =—KyVu,
where Ky = Ky(x, u) is the thermal conductivity

and Vu = (%, g; 8u) is the gradient of u.



Heat equation: cp% =V -(KoVu)+ Q

Assuming K, = const, we have
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Wherev2U:V'(VU):%+%+% is the
Laplacian of u.

Assuming Kj, ¢, p = const (uniform medium) and

Q = 0 (no heat sources), we obtain
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where k = Ky(cp)~! is called the thermal diffusivity.




Notation
Each function f : R® — R is assigned the gradient (a vector
field) and the Laplacian (a function). Each vector field

¢ : R? — R3 is assigned the divergence (a function).

“physical” notation: V = (%, %, %)

gradient: Vf = (%,g—; ofy

divergence: V- ¢ = %= ¢ 8¢y + oo

Laplacian: V3f = (Vf) cal + ay2 + 2
mathematical” notation:

gradient: grad f = (9, 97, 9T)

divergence: divp = % + a¢y + 8.

Laplacian: Af = div(grad f) 3X2 + 3;’; %



