Math 412-501

Theory of Partial Differential Equations

Lecture 2-2:

Higher-dimensional wave equation. Complex-valued functions and Laplace's equation.

One-dimensional heat equation

Describes heat conduction in a rod:

$$c\rho \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(K_0 \frac{\partial u}{\partial x} \right) + Q$$

$$K_0 = K_0(x), c = c(x), \rho = \rho(x), Q = Q(x, t).$$

Assuming K_0 , c, ρ are constant (uniform rod) and Q = 0 (no heat sources), we obtain

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

where $k = K_0(c\rho)^{-1}$.

Higher-dimensional heat equation

$$c
ho rac{\partial u}{\partial t} =
abla \cdot (K_0 \,
abla u) + Q$$

Assuming $K_0 = \text{const}$, we have

$$c\rho\frac{\partial u}{\partial t}=K_0\nabla^2 u+Q,$$

where
$$\nabla^2 u = \nabla \cdot (\nabla u) = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$$
.

Assuming K_0 , c, $\rho = \text{const}$ (uniform medium) and Q = 0 (no heat sources), we obtain

$$\left|\frac{\partial u}{\partial t} = k \, \nabla^2 u,\right|$$

where $k = K_0(c\rho)^{-1}$ is called the *thermal diffusivity*.

Notation

Each function $f: \mathbb{R}^3 \to \mathbb{R}$ is assigned the gradient (a vector field) and the Laplacian (a function). Each vector field $\vec{\phi}: \mathbb{R}^3 \to \mathbb{R}^3$ is assigned the divergence (a function).

"physical" notation:
$$\nabla = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$$

gradient:
$$\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})$$

divergence:
$$\nabla \cdot \vec{\phi} = \frac{\partial \phi_x}{\partial x} + \frac{\partial \phi_y}{\partial y} + \frac{\partial \phi_z}{\partial z}$$

Laplacian:
$$\nabla^2 f = \nabla \cdot (\nabla f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

"mathematical" notation:

gradient: grad
$$f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})$$

divergence:
$$\operatorname{div} \vec{\phi} = \frac{\partial \phi_x}{\partial x} + \frac{\partial \phi_y}{\partial y} + \frac{\partial \phi_z}{\partial z}$$

Laplacian:
$$\Delta f = \operatorname{div}(\operatorname{grad} f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

More notation

Each vector field $\vec{\phi}: \mathbb{R}^3 \to \mathbb{R}^3$ is assigned the **curl** (another vector field).

If
$$\vec{\phi} = (\phi_x, \phi_y, \phi_z)$$
 then

$$\operatorname{curl} \vec{\phi} = \left(\frac{\partial \phi_{\mathsf{z}}}{\partial \mathsf{y}} - \frac{\partial \phi_{\mathsf{y}}}{\partial \mathsf{z}}, \ \frac{\partial \phi_{\mathsf{x}}}{\partial \mathsf{z}} - \frac{\partial \phi_{\mathsf{z}}}{\partial \mathsf{x}}, \ \frac{\partial \phi_{\mathsf{y}}}{\partial \mathsf{x}} - \frac{\partial \phi_{\mathsf{x}}}{\partial \mathsf{y}} \right).$$

"physical" notation:

$$abla imes \phi = \left[egin{array}{cccc} \mathbf{x} & \mathbf{y} & \mathbf{z} \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ \phi_{x} & \phi_{y} & \phi_{z} \end{array}
ight],$$

where $\mathbf{x} = (1, 0, 0)$, $\mathbf{y} = (0, 1, 0)$, $\mathbf{z} = (0, 0, 1)$.

Vibration of a stretched membrane

u(x, y, t) = vertical displacement

Newton's law: mass \times acceleration = force

 $\rho(x,y) = \text{mass density}$

T(x, y, t) = magnitude of tensile force

Q(x, y, t) = other (vertical) forces on a unit mass

$$\vec{F} = \text{tensile force}$$
 $\vec{F} = T(x, y, t) \mathbf{t} \times \mathbf{n}$
vertical component $= \vec{F} \cdot \mathbf{z}$

 $mass \times acceleration$:

$$\iint_D \rho(x,y) \frac{\partial^2 u}{\partial t^2} dx dy = \iint_D \rho \frac{\partial^2 u}{\partial t^2} dA$$

tensile force
$$=\oint_{\partial D} \vec{F} \cdot \mathbf{z} \, ds = \oint_{\partial D} T(\mathbf{t} \times \mathbf{n}) \cdot \mathbf{z} \, ds$$

other forces =
$$\iint_{D} \rho Q \, dA$$

Newton's law:

$$\iint_{D} \rho \, \frac{\partial^{2} u}{\partial t^{2}} \, dA = \oint_{\partial D} T(\mathbf{t} \times \mathbf{n}) \cdot \mathbf{z} \, ds + \iint_{D} \rho Q \, dA$$

Since
$$(\mathbf{t} \times \mathbf{n}) \cdot \mathbf{z} = (\mathbf{n} \times \mathbf{z}) \cdot \mathbf{t}$$
,

$$\iint_{D} \rho \frac{\partial^{2} u}{\partial t^{2}} dA = \oint_{\partial D} T(\mathbf{n} \times \mathbf{z}) \cdot \mathbf{t} ds + \iint_{D} \rho Q dA.$$

For any vector field \vec{B} ,

$$\boxed{\iint_D (\nabla \times \vec{B}) \cdot \mathbf{n} \, dA = \oint_{\partial D} \vec{B} \cdot \mathbf{t} \, ds}$$

(Stokes' theorem)

$$\iint_{D} \rho \frac{\partial^{2} u}{\partial t^{2}} dA = \iint_{D} (\nabla \times T(\mathbf{n} \times \mathbf{z})) \cdot \mathbf{n} dA + \iint_{D} \rho Q dA$$

Since *D* is an arbitrary domain,

$$\rho \frac{\partial^2 u}{\partial t^2} = (\nabla \times T(\mathbf{n} \times \mathbf{z})) \cdot \mathbf{n} + \rho Q$$

perfectly elastic membrane: we assume that $T(x, y, t) \approx T_0 = \text{const.}$

Equation of membrane: H(x, y, z, t) = 0, where H(x, y, z, t) = z - u(x, y, t).

Normal vector **n** is proportional to $\nabla H = \left(-\frac{\partial u}{\partial x}, -\frac{\partial u}{\partial y}, 1\right)$.

We assume that $|\nabla H| \approx 1$ so that $\mathbf{n} \approx \nabla H$.

$$\rho \frac{\partial^2 u}{\partial t^2} = T_0 \big(\nabla \times (\nabla H \times \mathbf{z}) \big) \cdot \nabla H + \rho Q$$

$$abla H imes \mathbf{z} = egin{bmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} \\ -rac{\partial u}{\partial x} & -rac{\partial u}{\partial y} & 1 \\ 0 & 0 & 1 \end{bmatrix} = -rac{\partial u}{\partial y} \mathbf{x} + rac{\partial u}{\partial x} \mathbf{y}$$

$$\nabla \times (\nabla H \times \mathbf{z}) = \begin{vmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -\frac{\partial u}{\partial y} & \frac{\partial u}{\partial x} & 0 \end{vmatrix} = \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) \mathbf{z}$$

$$\rho \frac{\partial^2 u}{\partial t^2} = T_0 \nabla^2 u + \rho Q$$

$$\rho(x,y)\frac{\partial^2 u}{\partial t^2} = T_0 \nabla^2 u + \rho(x,y)Q(x,y,t)$$

Assuming $\rho = \text{const}$ and Q = 0, we obtain

$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$$

where $c^2 = T_0/\rho$.

This is **two-dimensional wave equation**.

Complex numbers

 \mathbb{C} : complex numbers. z = x + iy, where $x, y \in \mathbb{R}$ and i^2

z=x+iy, where $x,y\in\mathbb{R}$ and $i^2=-1$ (that is, $i=\sqrt{-1}$).

x is the **real** part of z, iy is the **imaginary** part of z.

z = x + iy is identified with the vector $(x, y) \in \mathbb{R}^2$.

 $z = r(\cos \phi + i \sin \phi)$, where $r \ge 0$ is the **modulus** of z (r = |z|) and $\phi \in \mathbb{R}$ is the **argument** of z (determined up to adding a multiple of 2π).

$$|x+iy|=\sqrt{x^2+y^2}.$$

$$z = x + iy$$

$$z = r(\cos\phi + i\sin\phi).$$

If
$$z_1=x_1+iy_1$$
 and $z_2=x_2+iy_2$ then
$$z_1+z_2=(x_1+x_2)+i(y_1+y_2),$$

$$z_1z_2=(x_1x_2-y_1y_2)+i(x_1y_2+x_2y_1).$$

If $z_1 = r_1(\cos\phi_1 + i\sin\phi_1)$ and $z_2 = r_2(\cos\phi_2 + i\sin\phi_2)$, then

$$z_1z_2 = r_1r_2(\cos(\phi_1 + \phi_2) + i\sin(\phi_1 + \phi_2)).$$

 $e^{i\phi} = \cos \phi + i \sin \phi$ for any $\phi \in \mathbb{R}$. Then $e^{i(\phi_1 + \phi_2)} = e^{i\phi_1}e^{i\phi_2}$, $\phi_1, \phi_2 \in \mathbb{R}$.

 $z = re^{i\phi}$, where r is the modulus, ϕ is the argument.

Given z = x + iy, the **complex conjugate** of z is $\bar{z} = x - iy$.

The conjugacy $z \mapsto \overline{z}$ is the reflection of $\mathbb C$ in the real line.

$$\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$$
, $\overline{z_1}\overline{z_2} = \overline{z}_1\overline{z}_2$.
 $z\overline{z} = |z|^2$, hence $z^{-1} = \frac{\overline{z}}{|z|^2}$.

$$(x+iy)^{-1}=\frac{x-iy}{x^2+y^2}.$$

The set \mathbb{C} of complex numbers is a **field**.

Analytic functions

Suppose $D \subset \mathbb{C}$ is a domain and consider a function $f: D \to \mathbb{C}$.

The function f is called **complex differentiable** at a point $z_0 \in D$ if

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \quad \text{exists.}$$

The limit value is the **derivative** $f'(z_0)$.

The function f is called **analytic at a point** $z_0 \in D$ if it is complex differentiable in a neighborhood of z_0 . f is called **analytic in** D if it is complex differentiable at every point of D.

To a complex function $f: D \to \mathbb{C}$ we associate a real vector-function $(u, v): D \to \mathbb{R}^2$ defined by f(x + iy) = u(x, y) + iv(x, y).

Theorem The function f is analytic if and only if u, v have continuous partial derivatives $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ and, moreover, the **Cauchy-Riemann** equations are satisfied:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Sketch of the proof: f is complex differentiable at z_0 if

$$f(z) = f(z_0) + p \cdot (z - z_0) + \alpha(z),$$

where $p \in \mathbb{C}$ $(p = f'(z_0))$ and $|\alpha(z)|/|z - z_0| \to 0$ as $z \to z_0$.

(u, v) is differentiable at (x_0, y_0) if

$$\begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix} = \begin{pmatrix} u(x_0,y_0) \\ v(x_0,y_0) \end{pmatrix} + A \begin{pmatrix} x-x_0 \\ y-y_0 \end{pmatrix} + \begin{pmatrix} \beta(x,y) \\ \gamma(x,y) \end{pmatrix},$$

where A is a 2×2 matrix, $A = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}$, and $(\beta(x,y), \gamma(x,y))$ is small when compared with $(x-x_0, y-y_0)$.

When
$$A = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}$$
 is the matrix of multiplication?

Let p=q+ir. Then $p\cdot 1=q+ir$, $p\cdot i=-r+iq$. It follows that $A=\begin{pmatrix} q&-r\\r&q \end{pmatrix}$.

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

The CR equations imply that

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y}, \qquad \frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial y \partial x}.$$

It follows that $\nabla^2 u = 0$. Similarly, $\nabla^2 v = 0$. Real and imaginary components of a complex analytic function are **harmonic**.

