Math 412-501

Theory of Partial Differential Equations

Lecture 2-5: Laplace's equation in polar coordinates (continued). Heat conduction in a rectangle.

Laplace's equation

In Cartesian coordinates (x, y),

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

In polar coordinates (r, θ) ,

$$\nabla^2 u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$
or

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \cdot \frac{\partial u}{\partial r} + \frac{1}{r^2} \cdot \frac{\partial^2 u}{\partial \theta^2} = 0.$$

Separation of variables: $u(r, \theta) = h(r)\phi(\theta)$.

$$r^{2} \frac{d^{2}h}{dr^{2}} + r \frac{dh}{dr} = \lambda h,$$
$$\frac{d^{2}\phi}{d\theta^{2}} = -\lambda \phi.$$

Proposition Suppose h and ϕ are solutions of the above ODEs for the same value of λ . Then $u(r,\theta)=h(r)\phi(\theta)$ is a solution of Laplace's equation.

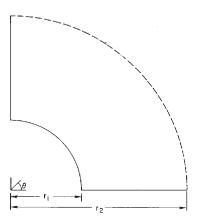
Euler's (or equidimensional) equation

$$r^2 \frac{d^2h}{dr^2} + r \frac{dh}{dr} - \lambda h = 0 \quad (r > 0)$$

$$\lambda > 0 \implies h(r) = C_1 r^p + C_2 r^{-p} \quad (\lambda = p^2, p > 0)$$

 $\lambda = 0 \implies h(r) = C_1 + C_2 \log r$

Chunk of an annulus



Boundary value problem (annular sector)

$$\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0 \quad (r_1 < r < r_2, \ 0 < \theta < L),$$

$$u(r,0) = u(r,L) = 0 \quad (r_1 < r < r_2),$$

$$u(r_1,\theta) = 0, \quad u(r_2,\theta) = f(\theta) \quad (0 < \theta < L).$$

It is assumed that $r_1 > 0$, $L < 2\pi$.

If $r_1 = 0$ then the chunk (annular sector) becomes a wedge (circular sector).

We are looking for a solution $u(r, \theta) = h(r)\phi(\theta)$ to Laplace's equation that satisfies the three homogeneous boundary conditions.

PDE holds if

$$r^{2} \frac{d^{2}h}{dr^{2}} + r \frac{dh}{dr} = \lambda h,$$
$$\frac{d^{2}\phi}{d\theta^{2}} = -\lambda \phi.$$

for the same constant λ .

Boundary conditions
$$u(r, 0) = u(r, L) = 0$$
 hold if $\phi(0) = \phi(L) = 0$.

Boundary condition $u(r_1, \theta) = 0$ holds if $h(r_1) = 0$.

Eigenvalue problem: $\phi'' = -\lambda \phi$, $\phi(0) = \phi(L) = 0$.

Eigenvalues: $\lambda_n = (\frac{n\pi}{L})^2$, n = 1, 2, ...

Eigenfunctions: $\phi_n(\theta) = \sin \frac{n\pi\theta}{L}$.

Dependence on r:

$$r^2h'' + rh' = \lambda h, \quad h(r_1) = 0.$$

$$\implies h(r) = C_0\left(\left(\frac{r}{r_1}\right)^p - \left(\frac{r_1}{r}\right)^p\right) \quad (p = \sqrt{\lambda})$$

Solution of Laplace's equation:

$$u(r,\theta) = \left(\left(\frac{r}{r_1} \right)^{n\pi/L} - \left(\frac{r_1}{r} \right)^{n\pi/L} \right) \sin \frac{n\pi\theta}{L}, \quad n = 1, 2, \dots$$

We are looking for the solution of the reduced boundary value problem as a superposition of solutions with separated variables.

$$u(r,\theta) = \sum_{n=1}^{\infty} C_n \left(\left(\frac{r}{r_1} \right)^{n\pi/L} - \left(\frac{r_1}{r} \right)^{n\pi/L} \right) \sin \frac{n\pi\theta}{L}$$

Boundary condition $u(r_2, \theta) = f(\theta)$ is satisfied if

$$f(\theta) = \sum_{n=1}^{\infty} C_n \left(\left(\frac{r_2}{r_1} \right)^{n\pi/L} - \left(\frac{r_1}{r_2} \right)^{n\pi/L} \right) \sin \frac{n\pi\theta}{L}$$

How do we solve the boundary value problem?

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} = 0 \quad (r_1 < r < r_2, \ 0 < \theta < L),$$

$$u(r_2, \theta) = f(\theta), \ u(r, 0) = u(r, L) = u(r_1, \theta) = 0.$$

• Expand f into the Fourier sine series:

$$f(\theta) = \sum_{n=1}^{\infty} a_n \sin \frac{n\pi\theta}{L}.$$

Write the solution:

$$u(r,\theta) = \sum_{n=1}^{\infty} C_n \left(\left(\frac{r}{r_1} \right)^{n\pi/L} - \left(\frac{r_1}{r} \right)^{n\pi/L} \right) \sin \frac{n\pi\theta}{L},$$

where
$$C_n = \frac{a_n}{\left(\frac{r_2}{r_1}\right)^{n\pi/L} - \left(\frac{r_1}{r_2}\right)^{n\pi/L}}$$
.

Boundary value problem (circular sector)

$$\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0 \quad (0 < r < R, \ 0 < \theta < L),$$

$$u(r,0) = u(r,L) = 0 \quad (0 < r < R),$$

$$u(0,\theta) = 0, \ u(R,\theta) = f(\theta) \quad (0 < \theta < L).$$

It is assumed that $L < 2\pi$.

We are looking for a solution $u(r, \theta) = h(r)\phi(\theta)$ to Laplace's equation that satisfies the three homogeneous boundary conditions.

PDE holds if

$$r^{2} \frac{d^{2}h}{dr^{2}} + r \frac{dh}{dr} = \lambda h,$$
$$\frac{d^{2}\phi}{d\theta^{2}} = -\lambda \phi.$$

for the same constant λ .

Boundary conditions
$$u(r, 0) = u(r, L) = 0$$
 hold if $\phi(0) = \phi(L) = 0$.

Boundary condition $u(0, \theta) = 0$ holds if h(0) = 0.

Eigenvalue problem: $\phi'' = -\lambda \phi$, $\phi(0) = \phi(L) = 0$.

Eigenvalues:
$$\lambda_n = (\frac{n\pi}{I})^2$$
, $n = 1, 2, ...$

Eigenfunctions: $\phi_n(\theta) = \sin \frac{n\pi\theta}{L}$.

Dependence on r:

$$r^2h'' + rh' = \lambda h, \quad h(0) = 0.$$

 $\implies h(r) = C_0r^p \quad (p = \sqrt{\lambda})$

Solution of Laplace's equation:

$$u(r,\theta) = r^{n\pi/L} \sin \frac{n\pi\theta}{L}, \quad n = 1, 2, \dots$$

We are looking for the solution of the reduced boundary value problem as a superposition of solutions with separated variables.

$$u(r,\theta) = \sum_{n=1}^{\infty} C_n r^{n\pi/L} \sin \frac{n\pi\theta}{L}$$

Boundary condition $u(R, \theta) = f(\theta)$ is satisfied if

$$f(\theta) = \sum_{n=1}^{\infty} C_n R^{n\pi/L} \sin \frac{n\pi\theta}{L}$$

How do we solve the boundary value problem?

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} = 0 \quad (0 < r < R, \ 0 < \theta < L),$$

$$u(R,\theta) = f(\theta), \ u(r,0) = u(r,L) = u(0,\theta) = 0.$$

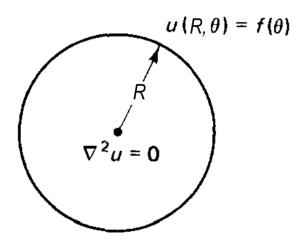
• Expand f into the Fourier sine series:

$$f(\theta) = \sum_{n=1}^{\infty} a_n \sin \frac{n\pi\theta}{I}.$$

• Write the solution:

$$u(r,\theta) = \sum_{n=1}^{\infty} a_n \left(\frac{r}{R}\right)^{n\pi/L} \sin \frac{n\pi\theta}{L}.$$

Circle



Boundary value problem (circle)

$$\begin{split} &\frac{1}{r}\frac{\partial}{\partial r}\!\!\left(r\frac{\partial u}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} = 0 \quad (0 < r < R, \; -\pi < \theta < \pi) \\ &u(R,\theta) = f(\theta) \qquad (-\pi < \theta < \pi) \\ &u(r,-\pi) = u(r,\pi), \;\; \frac{\partial u}{\partial \theta}(r,-\pi) = \frac{\partial u}{\partial \theta}(r,\pi) \\ &(0 < r < R) \;\; \textbf{(periodic conditions)} \end{split}$$

We also need a condition on $u(0, \theta)$.

This is a **singular** condition: $|u(0,\theta)| < \infty$.

Separation of variables: $u(r, \theta) = h(r)\phi(\theta)$.

PDE holds if

$$r^2 \frac{d^2 h}{dr^2} + r \frac{dh}{dr} = \lambda h,$$

 $\frac{d^2 \phi}{d\theta^2} = -\lambda \phi.$

for the same constant λ .

Boundary conditions
$$u(r, -\pi) = u(r, \pi)$$
 and $\frac{\partial u}{\partial \theta}(r, -\pi) = \frac{\partial u}{\partial \theta}(r, \pi)$ hold if $\phi(-\pi) = \phi(\pi), \quad \phi'(-\pi) = \phi'(\pi).$

Boundary condition $|u(0,\theta)| < \infty$ holds if $|h(0)| < \infty$.

Eigenvalue problem:

$$\phi'' = -\lambda \phi, \quad \phi(-\pi) = \phi(\pi), \ \phi'(-\pi) = \phi'(\pi).$$

Eigenvalues: $\lambda_n = n^2$, n = 0, 1, 2, ...

Eigenfunctions: $\phi_0 = 1$, $\phi_n(\theta) = \cos n\theta$ and $\psi_n(\theta) = \sin n\theta$, n = 1, 2, ...

Dependence on r:

$$r^2h''+rh'=\lambda h, \quad |h(0)|<\infty.$$

$$\lambda > 0 \implies h(r) = C_0 r^p \ (p = \sqrt{\lambda})$$

 $\lambda = 0 \implies h(r) = C_0$

Solution of Laplace's equation: $u(r,\theta) = C_0$ or $u(r,\theta) = r^n (C_1 \cos n\theta + C_2 \sin n\theta), \quad n = 1, 2, ...$

We are looking for the solution of the reduced boundary value problem as a superposition of solutions with separated variables.

$$u(r,\theta) = C_0 + \sum_{n=1}^{\infty} r^n (C_n \cos n\theta + D_n \sin n\theta)$$

Boundary condition $u(R, \theta) = f(\theta)$ is satisfied if

$$f(\theta) = C_0 + \sum_{n=1}^{\infty} R^n (C_n \cos n\theta + D_n \sin n\theta)$$

How do we solve the boundary value problem?

$$\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0 \quad (0 < r < R, \ -\pi < \theta < \pi),$$

$$u(r, -\pi) = u(r, \pi), \ \frac{\partial u}{\partial \theta}(r, -\pi) = \frac{\partial u}{\partial \theta}(r, \pi),$$

$$u(R, \theta) = f(\theta), \ |u(0, \theta)| < \infty.$$

• Expand f into the Fourier series on $[-\pi, \pi]$:

$$f(\theta) = a_0 + \sum_{n=1}^{\infty} (a_n \cos n\theta + b_n \sin n\theta).$$

Write the solution:

$$u(r,\theta) = a_0 + \sum_{n=1}^{\infty} \left(\frac{r}{R}\right)^n (a_n \cos n\theta + b_n \sin n\theta).$$

Heat conduction in a rectangle

Initial-boundary value problem:

$$\frac{\partial u}{\partial t} = k \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \quad (0 < x < L, \ 0 < y < H),$$

$$u(x, y, 0) = f(x, y) \quad (0 < x < L, \ 0 < y < H),$$

$$u(0, y, t) = u(L, y, t) = 0 \quad (0 < y < H),$$

$$u(x, 0, t) = u(x, H, t) = 0 \quad (0 < x < L).$$

We are looking for solutions to the boundary value problem with separated variables.

Separation of variables: $u(x, y, t) = \phi(x)h(y)G(t)$. Substitute this into the heat equation:

$$\phi(x)h(y)\frac{dG}{dt} = k\left(\frac{d^2\phi}{dx^2}h(y)G(t) + \phi(x)\frac{d^2h}{dy^2}G(t)\right).$$

Divide both sides by

$$k \cdot \phi(x)h(y)G(t) = k \cdot u(x, y, t)$$
:

$$\frac{1}{kG} \cdot \frac{dG}{dt} = \frac{1}{\phi} \cdot \frac{d^2\phi}{dx^2} + \frac{1}{h} \cdot \frac{d^2h}{dy^2}.$$

It follows that
$$\frac{1}{\phi} \cdot \frac{d^2 \phi}{dx^2} = -\lambda$$
, $\frac{1}{h} \cdot \frac{d^2 h}{dy^2} = -\mu$,

$$\frac{1}{kG} \cdot \frac{dG}{dt} = -\lambda - \mu, \text{ where } \lambda \text{ and } \mu \text{ are separation}$$

The variables have been separated:

$$\begin{split} \frac{dG}{dt} &= -(\lambda + \mu) kG, \\ \frac{d^2\phi}{dx^2} &= -\lambda \phi, \qquad \frac{d^2h}{dy^2} &= -\mu h. \end{split}$$

Proposition Suppose G, ϕ , and h are solutions of the above ODEs for the same values of λ and μ . Then $u(x,y,t)=\phi(x)h(y)G(t)$ is a solution of the heat equation.

Boundary conditions u(0, y, t) = u(L, y, t) = 0 hold if $\phi(0) = \phi(L) = 0$.

Boundary conditions u(x, 0, t) = u(x, H, t) = 0 hold if h(0) = h(H) = 0.