Math 412-501
Theory of Partial Differential Equations

Lecture 2-8:
Sturm-Liouville eigenvalue problems
(continued).



Sturm-Liouville differential equation:

d / do

&<pa) +qp+Aop=0 (a<x<b),

where p = p(x), ¢ = q(x), 0 = o(x) are known
functions on [a, b] and A is an unknown constant.

Sturm-Liouville eigenvalue problem =
= Sturm-Liouville differential equation +
+ linear homogeneous boundary conditions

Eigenfunction: nonzero solution ¢ of the boundary
value problem.

Eigenvalue: corresponding value of \.



d/ d
$<pd—f> +qp+Xop=0 (a<x<b).

The equation is regular if p, g, o are real and
continuous on [a, b], and p,o > 0 on [a, b].

The Sturm-Liouville eigenvalue problem is regular if
the equation is regular and boundary conditions are
of the form

big(a) + Ba¢'(a) = O,
Bsp(b) + Bag’(b) = 0,
where §; € R, |f1| + |62| # 0, B3] + [B4] # 0.



6 properties of a regular Sturm-Liouville problem

Eigenvalues are real.

Eigenvalues form an increasing sequence.
n-th eigenfunction has n — 1 zeros in (a, b).
Eigenfunctions are orthogonal with weight .

Eigenfunctions and eigenvalues are related

through the Rayleigh quotient.

Piecewise smooth functions can be expanded

into generalized Fourier series of eigenfunctions.



Heat flow in a nonuniform rod without sources

Initial-boundary value problem:

ou 0 ou
ou ou :
5(0, t) = 5“’ t) =0, (insulated ends)

u(x,0) =f(x) (0<x<L).

We assume that Ky(x), c(x), p(x) are positive and
continuous on [0, L]. Also, we assume that f(x) is
piecewise smooth.



Separation of variables: u(x, t) = ¢(x)G(t).
Substitute this into the heat equation:
dG d do
P0G = o) ©
Divide both sides by c(x)p(x)p(x)G(t) = cpu:

1 dG 1 d do
G dt cpo dx( ) A = const

O dx
The variables have been separated:

dG B do -
9= L AG =0, dX<Kod)+/\cpgb—0.

dt



ou

7 (L. 1) = 0 hold

Ju
Bound diti —(0,t) =
oundary conditions 8x(0’ )

provided ¢'(0) = ¢'(L) =
Eigenvalue problem:

() + rcpp =0, (0) = /(1) =0

This is a regular Sturm-Liouville eigenvalue problem
(p= Ko, q=0,0=cp [a b] =[0,L])
There are infinitely many eigenvalues:

M< <. .. <A <A1 <...

The corresponding eigenfunctions ¢, are unique up
to multiplicative constants.



Dependence on t:
G'(t) = —\G(t) = G(t) = Ge
Solutions of the boundary value problem:
u(x,t) = e Mp,(x), n=1,2,...

The general solution of the boundary value problem
is a superposition of solutions with separated
variables:

u(x,t) = Zool Coe Mo (x).
Initial condition u(x,0) = f(x) is satisfied when

F(x) =D Ca(x).



Hence C, are coefficients of the generalized Fourier
series for f:

|| fsncx)otx) o

C, =20
/0 22(x)c(x)p(x) dx

Solution:  u(x,t) = Zool Coe Mt dp(x).

In general, we do not know A, and ¢,,.

Nevertheless, we can determine lim u(x, t).
t——+4o00

We need to know which A\, is >0, =0, <0.



d d
9 (22) + rcps =0, #(0)= (L) =0

Rayleigh quotient:
— K¢’

L L
/\2
0+/0 K0(¢) dX

L
/ P*cp dx
0

Since ¢'(0) = ¢'(L) = 0, the nonintegral term
vanishes. |t follows that either A > 0, orelse A =0
and ¢ = const. Indeed, A = 0 is an eigenvalue.

>\:



Solution of the heat conduction problem:
_ o —Ant
u(x, t) = Zn:1 Cre Mt hn(x).

Now we know that A\; = 0. Furthermore, we can set
¢1=1. Besides, 0 < My < A3 < ...

It follows that

/ () ()0lx) die
/ ol

t—+00




Rayleigh quotient

Consider a regular Sturm-Liouville equation:

d/ d
&(pd—f)—}—q¢—l—)\0¢:0 (a < x < b).

Suppose ¢ is a nonzero solution for some \.
Multiply the equation by ¢ and integrate over |[a, b]:

/b¢&( Z¢) dx+/aqu>2dx+/\/abagb2dx:0.

Integrate the first integral by parts:

b b
[ oaloge) e |- [ (G o




It follows that

We have used only the facts that p, g, are
continuous and that ¢ > 0.

The Rayleigh quotient can be used for any
boundary conditions.



Regular Sturm-Liouville equation:

d/ do
—(p— = b).
dX(de>+qu+)\a¢ 0 (a<x<b)
Consider a linear differential operator
d / df
L) = = (po) +af.
L) = G \Pg) +a
Now the equation can be rewritten as
L(¢) + oo = 0.

Lemma Suppose f and g are functions on [a, b|
such that £(f) and L(g) are well defined. Then

8L(F)  FL(g) = - (plar' — &)).



Proof: L(f) = (pF') + af, L(&) = (&) + .
Left-hand side:

gL(f)—fL(g) = g(pf') + gqf — f(pg') — fag
= g(pf') — f(pg').

Right-hand side:
d

&<p(gf’ - fé’)) = d%(g(pf’) —f (pg’)>
=g'pt' +g(pf') — f'pg’ —f(pg')

= g(pf') - f(pg).



Lagrange’s identity:

8L(F) ~ FL(8) = < (p(ar' — &)

Integrating over [a, b], we obtain Green’s formula:

b
a

/ab<g£(f ) — f,C(g)) dx — plaf' — )

Claim If f and g satisfy the same regular boundary
conditions, then the right-hand side in Green's
formula vanishes.



Proof: We have that

Aif(a) + B2f'(a) =0,  Pig(a) + Bg'(a) =0,
where (1, 52 € R, |51]| + |52| # 0.
Vectors (f(a), f'(a)) and (g(a),g’(a)) are
orthogonal to vector (31, 32). Since (51, 32) # 0, it

follows that (f(a), f'(a)) and (g(a), g’'(a)) are
parallel. Then their vector product is equal to 0:

(g(a),g'(a)) x (f(a), '(a)) = g(a)f'(a) — f(a)g'(a) = 0.

Similarly, g(b)f'(b) — f(b)g’(b) = 0.
Hence A
pef’ —1fg') | =0.



