
Math 412-501

Theory of Partial Differential Equations

Lecture 2-9:

Sturm-Liouville eigenvalue problems
(continued).



Regular Sturm-Liouville eigenvalue problem:

d

dx

(

p
dφ

dx

)

+ qφ + λσφ = 0 (a < x < b),

β1φ(a) + β2φ
′(a) = 0,

β3φ(b) + β4φ
′(b) = 0.

Here βi ∈ R, |β1| + |β2| 6= 0, |β3| + |β4| 6= 0.
Functions p, q, σ are continuous on [a, b],
p > 0 and σ > 0 on [a, b].



6 properties of a regular Sturm-Liouville problem

• Eigenvalues are real.

• Eigenvalues form an increasing sequence.

• n-th eigenfunction has n − 1 zeros in (a, b).

• Eigenfunctions are orthogonal with weight σ.

• Eigenfunctions and eigenvalues are related
through the Rayleigh quotient.

• Piecewise smooth functions can be expanded
into generalized Fourier series of eigenfunctions.



Regular Sturm-Liouville equation:

d

dx

(

p
dφ

dx

)

+ qφ + λσφ = 0 (a < x < b).

Consider a linear differential operator

L(f ) =
d

dx

(

p
df

dx

)

+ qf .

Now the equation can be rewritten as

L(φ) + λσφ = 0.



Lagrange’s identity:

gL(f ) − f L(g) =
d

dx

(

p(gf ′ − fg ′)
)

Integrating over [a, b], we obtain Green’s formula:

∫ b

a

(

gL(f ) − f L(g)
)

dx = p(gf ′ − fg ′)
∣

∣

∣

b

a

Claim If f and g satisfy the same regular boundary
conditions, then the right-hand side in Green’s
formula vanishes.



Suppose φn and φm are eigenfunctions of the
Sturm-Liouville problem corresponding to
eigenvalues λn and λm:

L(φn) + λnσφn = 0, L(φm) + λmσφm = 0.

Since φn and φm satisfy the same regular boundary
conditions, Green’s formula implies that

∫ b

a

(

φmL(φn) − φnL(φm)
)

dx = 0

=⇒
∫ b

a

(λm − λn)φn(x)φm(x)σ(x) dx = 0

If λn 6= λm, then

∫ b

a

φn(x)φm(x)σ(x) dx = 0.



Suppose φ is a complex-valued eigenfunction
corresponding to a complex eigenvalue λ:

L(φ) + λσφ = 0,

β1φ(a) + β2φ
′(a) = 0,

β3φ(b) + β4φ
′(b) = 0.

We are going to show that λ ∈ R.

Any complex number z = x + iy is assigned its
complex conjugate z̄ = x − iy .

Let us apply the complex conjugacy to the
Sturm-liouville equation and the boundary
conditions.



L(φ) + λσφ = 0,

β1φ(a) + β2φ′(a) = β3φ(b) + β4φ′(b) = 0.

It is known that z1 + z2 = z1 + z2 and z1 · z2 = z1 · z2.

L(φ) + λ · σ · φ = 0,

β1 ·φ(a)+β2 ·φ′(a) = β3 ·φ(b)+β4 ·φ′(b) = 0.

If z is real then z̄ = z .

L(φ) + λσφ = 0,

β1 ·φ(a)+β2 ·φ′(a) = β3 ·φ(b)+β4 ·φ′(b) = 0.



Let φ denote the complex conjugate function of φ,
i.e., φ(x) = φ(x) for a ≤ x ≤ b.

We have that φ = f + ig , where f and g are
real-valued functions. Then φ = f − ig . Note that

φ
′
= (f − ig)′ = f ′ − ig ′ = f ′ + ig ′ = φ′.

It follows that

L(φ) = (pφ′)′ + qφ = (pφ′)′ + qφ

=
(

pφ′)′ + qφ =
(

pφ
′)′

+ qφ = L(φ).



L
(

φ
)

+ λσφ = 0,

β1φ(a) + β2φ
′
(a) = β3φ(b) + β4φ

′
(b) = 0.

If φ is an eigenfunction belonging to an eigenvalue
λ, then φ is an eigenfunction belonging to the
eigenvalue λ.

Assume that λ 6= λ. Then
∫ b

a

φ(x)φ(x)σ(x) dx = 0.

But

∫ b

a

φ(x)φ(x)σ(x) dx =

∫ b

a

|φ(x)|2σ(x) dx > 0.

Thus λ = λ =⇒ λ ∈ R.



Some facts about Euclidean space

Euclidean space R
3.

Let v = (v1, v2, v3), u = (u1, u2, u3) be two vectors.

v · u = v1u1 + v2u2 + v3u3 is the dot product.

v and u are orthogonal if v · u = 0.

|v| =
√

v · v.

Vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)
form an orthonormal basis.

v = v1e1 + v2e2 + v3e3

= (v · e1)e1 + (v · e2)e2 + (v · e3)e3.



Let v1, v2, v3 be orthogonal nonzero vectors. They
form a basis in R

3 so that for any u ∈ R
3 we have

u = c1v1 + c2v2 + c3v3.

Note that u · vn = cnvn · vn so that cn =
u · vn

vn · vn

.

Pythagorean theorem implies that

|u|2 = |c1v1|2 + |c2v2|2 + |c3v3|2.
Observe that |cnvn|2 = |cn|2vn · vn. Hence

u · u =
|u · v1|2
v1 · v1

+
|u · v2|2
v2 · v2

+
|u · v3|2
v3 · v3

(Parseval’s equality)



Let v1, v2 be orthogonal nonzero vectors.
Given a vector u ∈ R

3, let

u0 = u − (c1v1 + c2v2), where cn =
u · vn

vn · vn

.

It is easy to check that u0 · v1 = u0 · v2 = 0 so that
u0 · (u − u0) = 0.

Pythagorean theorem implies that

|u|2 = |c1v1|2 + |c2v2|2 + |u0|2 ≥ |c1v1|2 + |c2v2|2.
Since |cnvn|2 = |cn|2vn · vn, we get

u · u ≥ |u · v1|2
v1 · v1

+
|u · v2|2
v2 · v2

(Bessel’s inequality)



Suppose A and B are linear operators in R
3.

We say that B is adjoint to A (denoted B = A∗) if

Au · v = u · Bv for all u, v ∈ R
3.

Let A = (aij)1≤i ,j≤3, B = (bij)1≤i ,j≤3.

Then Aej = a1je1 + a2je2 + a3je3, hence
aij = Aej · ei . Similarly, bij = Bej · ei = ei · Bej .

It follows that aij = bji , i.e., B is the transpose of A.

A is called self-adjoint if A = A∗.
Self-adjoint operators have only real eigenvalues.

Suppose v1, v2 are eigenvectors of A belonging to
eigenvalues λ1, λ2. Then

λ1v1 · v2 = Av1 · v2 = v1 · Av2 = λ2v1 · v2.

If λ1 6= λ2 then v1 · v2 = 0.



From Euclidean space to Hilbert space

Hilbert space is an infinite-dimensional analogue
of Euclidean space. One realization is

L2[a, b] = {f :
∫ b

a
|f (x)|2 dx < ∞}.

Inner product of functions:

〈f , g〉 =

∫ b

a

f (x)g(x) dx .

Since |fg | ≤ 1

2
(|f |2 + |g |2), the inner product is well

defined for any f , g ∈ L2[a, b].

Norm of a function: ‖f ‖ =
√

〈f , f 〉.
Convergence: we say that fn → f in the mean if
‖f − fn‖ → 0 as n → ∞.



Functions f , g ∈ L2[a, b] are called orthogonal if
〈f , g〉 = 0.

Alternative inner product:

〈f , g〉w =

∫ b

a

f (x)g(x)w(x) dx ,

where w is the weight function.

Functions f and g are called orthogonal with

weight w if 〈f , g〉w = 0.



A set f1, f2, . . . of pairwise orthogonal nonzero
functions is called complete if it is maximal, i.e.,
there is no nonzero function g such that 〈g , fn〉 = 0,
n = 1, 2, . . . .

A complete set forms a basis of the Hilbert space,
that is, each function g ∈ L2[a, b] can be expanded
into a series

g =
∑∞

n=1
cnfn

that converges in the mean.

The expansion is unique: cn =
〈g , fn〉
〈fn, fn〉

.


