Math 412-501
Theory of Partial Differential Equations

Lecture 3-8:
Properties of Fourier transforms.



Complex form of Fourier series

A Fourier series on the interval [—L, L]:
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A Fourier series in the complex form:
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For any y € R,
e = cosy +isiny, e’y—cosy—/smy
cosy = 3(e¥ + e V), siny = L(e¥ —eV).
Hence both forms of the Fourier series are
equivalent.



For any n € Z, let ¢,(x) = ™™/t Functions ¢, are
orthogonal relative to the inner product

(. g) = / F(x)2(x) dx.

L
Indeed, if n # m, then
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Also, , ,
_ 2 _ _
<¢na ¢n> = /_L ‘Cbn(X)‘ dx = /_L dx = 2L.

Functions ¢, form a basis in the Hilbert space
Lo([—L, L]). Any square-integrable function f on
[—L, L] is expanded into a series

)= ata(x) =D ce™

that converges in the mean. Coefficients are
obtained as usual:
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Fourier transform
Given a function h: R — C, the function
N 1 o0 .
h(w) = Flh|(w) = 2—/ h(x)e " dx, weR
s —00
is called the Fourier transform of h.

Given a function H : R — C, the function

H(x) = F~1[H](x) = /OO H(w)e*  dw, x€R

—00

is called the inverse Fourier transform of H.

Note that F![H](x) = 27 - F[H](—x).



Discrepancy in the definitions

“Mathematical” notation (used above):
L [
inner product: (f, g) = / f(x)g(x) dx;

L
Fourier coefficients:

— <f7¢”> _ 1 ' —intx/L 4.
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” 1 o .
Fourier transform: f(w) = / f(x)e '“* dx;

—00

inverse Fourier transform: F(x) :/ F(w)e™™ dw.

—0o0



Discrepancy in the definitions

“Physical” notation (used by Haberman):

L
inner (bra-ket) product: (f|g) :/ f(x)g(x) dx;
-L

Fourier coefficients:

_ <f‘¢n> _ i ‘ f(x inmx /L dx:
T lom) 2L [ flogeran

~ 1 o0 .
Fourier transform: f(w) = —/ f(x)e"™™ dx;

2m J_

inverse Fourier transform: F(x) :/ F(w)e ™ dw.
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Theorem Suppose h is an absolutely integrable
function on (—o0,00) and let H = F[h] be its
Fourier transform.

(i) If his smooth then h = F[H].

(ii) If h is piecewise smooth then the inverse
Fourier transform F~1[H] is equal to h at points of
continuity. Otherwise

FH](x) = h(x+) J2r h(x—)_

In particular, any smooth, absolutely integrable
function h: R — C is represented as a Fourier

integral 00 _
h(x):/ H(w)e"™™ dw.

o0




Proposition 1
(i) Flaf + bg] = aF[f] + bF|g] for all a,b € C.

(il) If g(x) = f(x + o) then &(w) = Aefaw f(w).
(iii) If h(x) = e’%*f(x) then h(w) = f(w — B3).

1 .
Proof of (ii): g(w) = 2—/ f(x +a)e " dx
T JR

Iow

_ 627" /Rf(x 4 a)e—iw(x+a) dx
_ e / f(X)e ™  dx = e"o‘“’lA‘( )
- 2T R - “)-



1, |x|] < a,
Example. f(x) =

x| > a.
’I_\'( ) 1 / f( )e—/wx d / —iwx d
W) = — X X = — x
21
1 a2 e —eT ™ sinaw 20
= — e p— = , w .
2m - 0 ~a 2T - Iw W
N 1 a I
f(O):—/ dx = 2 = lim 2
2 J_, T w0 7w
o 1, |x| <a,
Therefore / A giox gy — 1/2, |x| = a,
o W

0, |x]>a.



Proposition 2 Suppose that [ [f(x)| dx < cc.

Then (i) f is well defined and bounded;
(i) f is continuous;
(iii) f(w) — 0 as w — 0.

. 1
f(x)e "“dx S—/fx dx
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Statement (iii) holds if f = x[_, -
Shift theorem == (iii) holds for any f = [ 4.
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2

[ (w)]

Linearity = (iii) holds for piecewise constant functions.

Finally, for any € > 0 there exists a piecewise
constant function £ such that [~ |f — f]dx < e.



Theorem 1 Let f be a smooth function such that
both f and f’ are absolutely integrable on R. Then

(i) F(w) = iw - F(w);

(i) f(w) = a(w)/w, where lim a(w) =0.

. 1 .
Proof of (i):  Fi(w) = — / F(x)e~ ™ dx
R

27

o —g/Rf(x)(e_’“’X)’ dx
Iw

=5 i f(x)e “*dx = iw - f(w).

1 .
= —f(x)e

f and f' are absolutely integrable =—> lim f(x) =0

X—00



Corollary Let f be a smooth function such that
£, f" ..., f%) are all absolutely integrable on R.

Then () FO9(0) — (i)* o)
(i) f(w) = a(w)/wk, wherewli_)moooz(w):o.

Theorem 2 Let f be a function on R such that
Jo(1 4 [x]¥)|f(x)| dx < oo for some integer k > 1.

Then (i) f is k times differentiable;
(ii) F(w) = (=) FIHF ()] ().



Convolution
Suppose f,g : R — C are bounded, absolutely
integrable functions. The function

(F + g)(x) = / F(y)g(x — ) dy

is called the convolution of f and g.
Lemma fxg=gxf.
Proof: Let z=x —y. Then

(r+8)) = [ " F()g(x — y) dy

(0.9]

— /_OO f(x — z)g(z) dz = (g * f)(x).

o0



Convolution Theorem
(i) FIf - g] = FIf] = Flgl;
(ii) F[f x g] = 2x F[f] - Flg].

Proof of (ii):  F[f x gl(w) = % /R(f x g)(x)e "X dx

N % /]R /R f(y)glx —y)e ™ dxdy  (x=y+2)

— % /R /]R f(y)g(z)e U+ dz dy = 27 f(w)g(w).



Plancherel’s Theorem (a.k.a. Parseval’s Theorem)

(i) If a function f is both absolutely integrable and
square-integrable on R, then F[f] is also
square-integrable. Moreover,

/R|f(x)|2dx:27r/R|?(w)\2dw.

(i) If functions f, g are absolutely integrable and
square-integrable on R, then

/]R F()g(x) dx = 27 / P (w)E (@) dw.

R

Thatis, (f,g) =2 (f,8).



