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Theory of Partial Differential Equations

Lecture 4-2:
More on the Dirac delta function.

Green’s functions for ODEs.



Dirac delta function

δ(x) is a function on R such that

• δ(x) = 0 for all x 6= 0,

• δ(0) = ∞,

•
∫ ∞
−∞ δ(x) dx = 1.

For any continuous function f and any x0 ∈ R,
∫ ∞

−∞
f (x)δ(x − x0) dx = f (x0).

δ(x) is a generalized function (or distribution).

That is, δ is a linear functional on a space of test
functions f such that δ[f ] = f (0).



Distributions

Class of test functions S: consists of infinitely
smooth, rapidly decaying functions on R.
To be precise, f ∈ S if sup |xk f (m)(x)| < ∞ for any
integers k , m ≥ 0.

Convergence in S: we say that fn → f in S as
n → ∞ if sup |x |k |f (m)

n (x) − f (m)(x)| → 0 as
n → ∞ for any integers k , m ≥ 0.

Class of distributions S ′: consists of continuous
linear functionals on S. That is, a linear map
ℓ : S → R belongs to S ′ if ℓ[fn] → ℓ[f ] whenever
fn → f in S.

Convergence in S ′: we say that ℓn → ℓ in S ′ if
ℓn[f ] → ℓ[f ] for any f ∈ S.



Examples. (i) Delta function δ[f ] = f (0).

(ii) Shifted δ-function δx0
(x) = δ(x − x0), δx0

[f ] = f (x0).

(iii) Let g be a bounded, locally integrable function
on R. Then

f 7→
∫ ∞

−∞
f (x)g(x) dx

is a distribution, which is identified with g .

Delta sequence is a sequence of functions
g1, g2, . . . such that gn → δ in S ′ as n → ∞. That
is, for any f ∈ S

lim
n→∞

∫ ∞

−∞
f (x)gn(x) dx = f (0).

Delta family is a family of functions hε,
0 < ε ≤ ε0, such that lim

ε→0
hε = δ in S ′.



hε(x) =
1√
πε

e−x
2/ε, ε > 0.



How to differentiate a distribution

If g is a piecewise differentiable bounded function
on R then

∫ ∞

−∞
f (x)g ′(x) dx = −

∫ ∞

−∞
f ′(x)g(x) dx

for any test function f ∈ S.

Let γ be a distribution. Then S ∋ f 7→ −γ[f ′] is
also a distribution, which is denoted γ′ and called
the derivative of γ (in S ′).

In the case when γ is a differentiable function, the
derivative in S ′ coincides with the usual derivative.



Heaviside step function

H(x) =

{

0 if x < 0,

1 if x ≥ 0.

The Heaviside function is a regular distribution.
For any test function f ∈ S,

H ′[f ] = −
∫ ∞

−∞
f ′(x)H(x) dx

= −
∫ ∞

0

f ′(x) dx = −f (x)
∣

∣

∞
x=0

= f (0).

Thus the derivative of the Heaviside function is the
delta function: H ′ = δ.



Green’s functions for ODEs

Boundary value problem:

d2u

dx2
= f (x), u(0) = u(L) = 0.

Definition 1. Green’s function of the problem is a
function G (x , x0) (x , x0 ∈ [0, L]) such that for any f

u(x) =

∫

L

0

f (x0)G (x , x0) dx0.

Definition 2. Green’s function G (x , x0) of the
problem is its solution for f (x) = δ(x − x0):

∂2G (x , x0)

∂x2
= δ(x − x0), G (0, x0) = G (L, x0) = 0.



Definition 1 shows how to use Green’s function.
Definition 2 shows how to find Green’s function.
Both definitions are equivalent.

Definition 2 means that

• ∂2G (x , x0)

∂x2
= 0 for x < x0 and x > x0;

• G (x , x0) is continuous at x = x0;

• ∂G (x , x0)

∂x

∣

∣

∣

x=x0+
− ∂G (x , x0)

∂x

∣

∣

∣

x=x0−
= 1.



G (x , x0) =

{

ax + b if x < x0,

cx + d if x > x0,

where a, b, c , d may depend on x0.

∂G (x , x0)

∂x
=

{

a if x < x0,

c if x > x0.

Besides, G (0, x0) = b and G (L, x0) = cL + d .
Therefore















c − a = 1
ax0 + b = cx0 + d

b = 0
cL + d = 0

=⇒















a = (x0 − L)/L
b = 0
c = x0/L
d = −x0



G (x , x0) =











−x

L
(L − x0) if x < x0,

−x0

L
(L − x) if x > x0.

G (x , x0) = G (x0, x) (Maxwell’s reciprocity)



Hilbert space L2[0, L] = {h :
∫

L

0 |h(x)|2 dx < ∞}
Dense subspace H = {h ∈ C 2[0, L] : h(0) = h(L) = 0}
Linear operator L : H → L2[0, L], L[h] = h′′

L is self-adjoint: 〈L[h], g〉 = 〈h,L[g ]〉 for all h, g ∈ H.

〈L[h], g〉 =

∫

L

0

h′′(x)g(x) dx

= h′(x)g(x)
∣

∣

L

x=0
−

∫

L

0

h′(x)g ′(x) dx = −
∫

L

0

h′(x)g ′(x) dx

= −h(x)g ′(x)
∣

∣

L

x=0
+

∫

L

0

h(x)g ′′(x) dx = 〈h,L[g ]〉



Inverse operator L−1 : L2[0, L] → L2[0, L].

If L−1[f ] = u then u′′ = f , u(0) = u(L) = 0.

L−1[f ](x) =

∫

L

0

G (x , x0)f (x0) dx0

Since the operator L is self-adjoint, so is L−1.

〈L−1[f ], g〉 =

∫

L

0

∫

L

0

G (x , x0)f (x0)g(x) dx0 dx

〈f ,L−1[g ]〉 =

∫

L

0

∫

L

0

f (x)G (x , x0) g(x0) dx0 dx

L−1 is self-adjoint if and only if G (x , x0) = G (x0, x).



Nonhomogeneous boundary value problem:

u′′(x) = f (x), u(0) = α, u(L) = β.

We have that u = u1 + u2 + u3, where

u′′
1 = f , u1(0) = u1(L) = 0;

u′′
2 = 0, u2(0) = α, u2(L) = 0;

u′′
3 = 0, u3(0) = 0, u3(L) = β.

It turns out that

u1(x) =

∫

L

0

G (x , x0)f (x0) dx0,

u2(x) = α
(

1 − x

L

)

= −α
∂G (x , x0)

∂x0

∣

∣

∣

x0=0
,

u3(x) = β
x

L
= β

∂G (x , x0)

∂x0

∣

∣

∣

x0=L

.



Existense of Green’s function

Green’s function of an initial/boundary value
problem exists only if there is always a unique
solution.

Example 1. u′′ + u = f , u(0) = u(L) = 0.

Green’s function exists if L 6= nπ, n = 1, 2, . . .
(otherwise u1(x) = 0 and u2(x) = sin x are both
solutions for f = 0).

Example 2. u′′(x) + u(x) = f (x), 0 < x < L,
u(0) = u′(0) = 0.

Green’s function exists for any L > 0.


