Sample problems for Exam 1

Any problem may be altered, removed or replaced by a different one!

Problem 1. Consider an operation $*$ defined on the set \mathbb{Z} of integers by $a * b=a+b-2$. Does this operation provide the integers with a group structure?

Problem 2. Suppose $(S, *)$ is a semigroup satisfying the following two conditions: (i) there exists $e \in S$ such that $e * g=g$ for all $g \in S$ (existence of a left identity element), and (ii) for any $g \in S$ there exists $g^{\prime} \in S$ such that $g^{\prime} * g=e$ (existence of a left inverse). Prove that $(S, *)$ is a group.

Problem 3. Prove that the group $(\mathbb{Q} \backslash\{0\}, \cdot)$ is not cyclic.
Problem 4. Let G be a group of order 125. Show that G contains an element of order 5 .
Problem 5. Find the order and the sign of the permutation $\sigma=(12)(3456)(1234)(56)$.
Problem 6. Suppose $\pi, \sigma \in S_{5}$ are permutations of order 3. What are possible values for the order of the permutation $\pi \sigma$?

Problem 7. Find all subgroups of the alternating group A_{4}.
Problem 8. Determine which of the following groups of order 12 are isomorphic and which are not: $\mathbb{Z}_{12}, \mathbb{Z}_{3} \times \mathbb{Z}_{4}, \mathbb{Z}_{2} \times \mathbb{Z}_{6}, S_{3} \times \mathbb{Z}_{2}, A_{4}$ and D_{6}.

Problem 9. Find an example of an abelian group G and its subgroups H_{1} and H_{2} such that the subgroups H_{1} and H_{2} are isomorphic while the factor groups G / H_{1} and G / H_{2} are not.

Problem 10. Complete the following Cayley table of a group of order 9:

$*$	A	B	C	D	E	F	G	H	I
A	I								F
B		F						G	
C			H				E		
D				G		A			
E					E				
F				A		B			
G			E				A		
H		G						D	
I	F								C

