EXERCISES 0

12. Let $A = \{1, 2, 3\}$ and $B = \{2, 4, 6\}$. For each relation between A and B given as a subset of $A \times B$, decide whether it is a function mapping A into B. If it is a function, decide whether it is one to one and whether it is onto B.

a.
$$\{(1,4),(2,4),(3,6)\}$$

b.
$$\{(1,4),(2,6),(3,4)\}$$

$$\mathbf{c.} \{(1,6), (1,2), (1,4)\}$$

d.
$$\{(2,2), (1,6), (3,4)\}$$

e.
$$\{(1,6),(2,6),(3,6)\}$$

f.
$$\{(1, 2), (2, 6), (2, 4)\}$$

19. Show that the power set of a set A, finite or infinite, has too many elements to be able to be put in a one-to-one correspondence with A. Explain why this intuitively means that there are an infinite number of infinite cardinal numbers. [Hint: Imagine a one-to-one function ϕ mapping A into $\mathcal{P}(A)$ to be given. Show that ϕ cannot be onto $\mathcal{P}(A)$ by considering, for each $x \in A$, whether $x \in \phi(x)$ and using this idea to define a subset S of A that is not in the range of ϕ .] Is the set of everything a logically acceptable concept? Why or why not?

EXERCISES 1

compute the given expression using the indicated modular addition.

27.
$$2\sqrt{2} + \sqrt{32} 3\sqrt{2}$$

find all solutions x of the given equation.

33.
$$x +_{12} x = 2$$
 in \mathbb{Z}_{12}

EXERCISES 2

6. Table 2.28 can be completed to define an associative binary operation * on $S = \{a, b, c, d\}$. Assume this is possible and compute the missing entries.

2.28 Table

*	a	b	c	d
a	а	b	С	d
\overline{b}	b	a	c	d
С	С	d	с	d
d				

In Exercises 7 through 11, determine whether the binary operation * defined is commutative and whether * is associative.

- **10.** * defined on \mathbb{Z}^+ by letting $a * b = 2^{ab}$
- 13. How many different commutative binary operations can be defined on a set of 2 elements? on a set of 3 elements? on a set of n elements?

In Exercises 17 through 22, determine whether the definition of * does give a binary operation on the set. In the event that * is not a binary operation, state whether Condition 1, Condition 2, or both of these conditions on page 24 are violated.

22. On \mathbb{Z}^+ , define * by letting a * b = c, where c is the largest integer less than the product of a and b.

either prove the statement or give a counterexample.

- 28. Every commutative binary operation on a set having just two elements is associative.
- 37. Suppose that * is an associative and commutative binary operation on a set S. Show that $H = \{a \in S \mid a * a = a\}$ is closed under *. (The elements of H are **idempotents** of the binary operation *.)