Homework assignment \#3

Problem 1. List all subgroups of the group $\left(\mathbb{Z}_{10},+_{10}\right)$.

Problem 2. Let H be the subgroup of the additive group \mathbb{R} generated by 1 and $\sqrt{2}$: $H=\langle 1, \sqrt{2}\rangle$. Prove that H is not cyclic.

Problem 3. Prove that the additive group \mathbb{Q} cannot be generated by a finite set.

Problem 4. Suppose that a group G has only finitely many subgroups. Prove that G is finite.

Problem 5. Let a and b be elements of a group G. Prove that the elements $a b$ and $b a$ have the same order.

Problem 6. Draw the Cayley (di)graph of the group \mathbb{Z}_{8} with respect to a generating set $S=\{3,4\}$.

Problem 7. Consider the following permutations in S_{6} :

$$
\sigma=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 4 & 5 & 6 & 2
\end{array}\right), \quad \tau=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 4 & 1 & 3 & 6 & 5
\end{array}\right) .
$$

Compute permutations $\tau^{2} \sigma, \sigma^{-1} \tau \sigma$ and σ^{2021}. You can use two-row notation or disjoint cycle decomposition to express results.

Problem 8. Express the following permutations in S_{8} as a product of disjoint cycles, and then as a product of transpositions:

Problem 9. We know that two permutations $\sigma, \tau \in S_{n}$ commute if they are disjoint. Also, $\sigma \tau=\tau \sigma$ if σ and τ belong to the same cyclic subgroup of S_{n}. Find an example of permutations $\sigma, \tau \in S_{n}$ such that $\sigma \tau=\tau \sigma$ while σ and τ are neither disjoint nor in the same cyclic subgroup.

Problem 10. Suppose that a permutation $\sigma \in S_{n}$, where $n \geq 3$, commutes with any other permutation on n symbols: $\sigma \tau=\tau \sigma$ for all $\tau \in S_{n}$. Prove that σ is the identity map.

