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Lecture 10:
Homomorphisms of groups.

Classification of groups.



Homomorphism of groups

Definition. Let G and H be groups. A function
f : G → H is called a homomorphism of groups

if f (g1g2) = f (g1)f (g2) for all g1, g2 ∈ G .

Examples of homomorphisms:

• Residue modulo n of an integer.

For any k ∈ Z let f (k) be the remainder of k under division
by n. Then f : Z → Zn is a homomorphism of the group
(Z,+) onto the group (Zn,+n).

• Fractional part of a real number.

For any x ∈ R let f (x) = {x} = x − ⌊x⌋ (fractional part of
x). Then f : R → [0, 1) is a homomorphism of the group
(R,+) onto the group ([0, 1),+1).



• Sign of a permutation.

The function sgn : Sn → {−1, 1} is a homomorphism of the
symmetric group Sn onto the multiplicative group {−1, 1}.

• Determinant of an invertible matrix.

The function det : GL(n,R) → R \ {0} is a homomorphism
of the general linear group GL(n,R) onto the multiplicative
group R \ {0}.

• Linear transformation.

Any vector space is an abelian group with respect to vector
addition. If f : V1 → V2 is a linear transformation between
vector spaces, then f is also a homomorphism of groups.

• Trivial homomorphism.

Given groups G and H, we define f : G → H by f (g) = eH
for all g ∈ G , where eH is the identity element of H.



Properties of homomorphisms

Let f : G → H be a homomorphism of groups.

• The identity element eG in G is mapped to the
identity element eH in H .

f (eG ) = f (eGeG ) = f (eG )f (eG ). By cancellation in H, we get
f (eG ) = eH .

• f (g−1) = (f (g))−1 for all g ∈ G .

f (g)f (g−1) = f (gg−1) = f (eG ) = eH . Similarly,
f (g−1)f (g) = eH . Thus f (g−1) = (f (g))−1.

• f (g n) = (f (g))n for all g ∈ G and n ∈ Z.

• The order of f (g) divides the order of g .

Indeed, g n = eG =⇒ (f (g))n = eH for any n ∈ N.



Properties of homomorphisms

Let f : G → H be a homomorphism of groups.

• If K is a subgroup of G , then f (K ) is a
subgroup of H .

• If L is a subgroup of H , then f −1(L) is a

subgroup of G .

• If L is a normal subgroup of H , then f −1(L) is a
normal subgroup of G .

• f −1(eH) is a normal subgroup of G called the
kernel of f and denoted Ker(f ).



Isomorphism of groups

Definition. Let G and H be groups. A function f : G → H

is called an isomorphism of groups if it is bijective and
f (g1g2) = f (g1)f (g2) for all g1, g2 ∈ G .

The group G is said to be isomorphic to H if there exists an
isomorphism f : G → H. Notation: G ∼= H.

Theorem Isomorphism is an equivalence relation on the set
of all groups.

Classification of groups consists of describing all equivalence
classes of this relation and placing every known group into an
appropriate class.

Theorem The following features of groups are preserved
under isomorphisms: (i) the number of elements, (ii) the
number of elements of a particular order, (iii) being abelian,
(iv) being cyclic, (v) having a subgroup of a particular order
or particular index.



Examples of isomorphic groups

• (R,+) and (R+, ·).

An isomorphism f : R → R+ is given by f (x) = ex .

• Any two cyclic groups 〈g〉 and 〈h〉 of the same

order.

An isomorphism f : 〈g〉 → 〈h〉 is given by f (g n) = hn for all
n ∈ Z.

• Z6 and Z2 × Z3.

Both groups are cyclic groups of order 6.

• G ×H and H ×G (where G and H are groups).

An isomorphism f : G × H → H × G is given by
f (g , h) = (h, g) for all g ∈ G and h ∈ H.



Fundamental Theorem on Homomorphisms

Theorem Given a homomorphism f : G → H , the
factor group G/Ker(f ) is isomorphic to f (G ).

Idea of the proof. An isomorphism is given by φ(gK ) = f (g)
for any g ∈ G , where K = Ker(f ), the kernel of f .

Examples:

• Z/nZ is isomorphic to (Zn,+n).

• R/Z is isomorphic to ([0, 1),+1).

• Sn/An is isomorphic to Z2.

• GL(n,R)/SL(n,R) is isomorphic to (R \ {0}, ·).



Examples of non-isomorphic groups

• S3 and Z7.

S3 has order 6 while Z7 has order 7.

• S3 and Z6.

Z6 is abelian while S3 is not.

• Z and Z× Z.

Z is cyclic while Z× Z is not.

• Z× Z and Q.

Z×Z is generated by two elements (1, 0) and (0, 1) while Q

cannot be generated by a finite set.



• (R,+) and (R \ {0}, ·).

(R \ {0}, ·) has an element of order 2, namely, −1. In
(R,+), every element different from 0 has infinite order.

• Z× Z3 and Z× Z.

Z× Z3 has an element of finite order different from the
identity element, e.g., (0, 1), while Z× Z does not.

• Z8, Z4 × Z2 and Z2 × Z2 × Z2.

Orders of elements in Z8: 1, 2, 4 and 8; in Z4 ×Z2: 1, 2 and
4; in Z2 × Z2 × Z2: only 1 and 2.

• Z4 × Z4 × Z2 and Z4 × Z2 × Z2 × Z2.

Both groups have elements of order 1, 2 and 4. However
Z4 × Z4 × Z2 has 23 − 1 = 7 elements of order 2 while
Z4 × Z2 × Z2 × Z2 has 24 − 1 = 15.



Classification of abelian groups

Theorem 1 Any finitely generated abelian group is
isomorphic to a direct product of cyclic groups.

Theorem 2 Any finite abelian group is isomorphic to a direct
product of the form Zp

m1
1

× Zp
m2
2

× · · · × Zp
mr
r
, where

p1, p2, . . . , pr are prime numbers and m1,m2, . . . ,mr are
positive integers.

Theorem 3 Suppose that Zm × G ∼= Zn × H, where m, n
are positive integers and G ,H are finite groups. Then m = n

and G ∼= H.

Theorem 4 Suppose that

Zp
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mr
r

∼= Zq
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,

where pi , qj are prime numbers and mi , nj are positive
integers. Then the lists pm1

1 , pm2

2 , . . . , pmr
r and

qn1
1
, qn2

2
, . . . , qns

s coincide up to rearranging their elements.


