MATH 415
 Modern Algebra I

Lecture 13:
 Rings and fields.

Groups

Definition. A group is a binary structure $(G, *)$ that satisfies the following axioms:
(G0: closure)
for all elements g and h of $G, g * h$ is an element of G;
(G1: associativity)
$(g * h) * k=g *(h * k)$ for all $g, h, k \in G$;
(G2: existence of identity)
there exists an element $e \in G$, called the identity (or unit) of G, such that $e * g=g * e=g$ for all $g \in G$;
(G3: existence of inverse)
for every $g \in G$ there exists an element $h \in G$, called the inverse of g, such that $g * h=h * g=e$.
The group $(G, *)$ is said to be commutative (or abelian) if it satisfies an additional axiom:
(G4: commutativity) $g * h=h * g$ for all $g, h \in G$.

Semigroups

Definition. A semigroup is a binary structure $(S, *)$ that satisfies the following axioms:
(S0: closure)
for all elements g and h of $S, g * h$ is an element of S;
($\mathrm{S} 1:$ associativity)
$(g * h) * k=g *(h * k)$ for all $g, h, k \in S$.
The semigroup $(S, *)$ is said to be a monoid if it satisfies an additional axiom:
(S2: existence of identity) there exists an element $e \in S$ such that $e * g=g * e=g$ for all $g \in S$.
Optional useful properties of semigroups:
(S3: cancellation) $g * h_{1}=g * h_{2}$ implies $h_{1}=h_{2}$ and $h_{1} * g=h_{2} * g$ implies $h_{1}=h_{2}$ for all $g, h_{1}, h_{2} \in S$.
(S4: commutativity) $g * h=h * g$ for all $g, h \in S$.

Rings

Definition. A ring is a set R, together with two binary operations usually called addition and multiplication and denoted accordingly, such that

- R is an abelian group under addition,
- R is a semigroup under multiplication,
- multiplication distributes over addition.

The complete list of axioms is as follows:
(A0) for all $x, y \in R, x+y$ is an element of R;
(A1) $(x+y)+z=x+(y+z)$ for all $x, y, z \in R$;
(A2) there exists an element, denoted 0 , in R such that $x+0=0+x=x$ for all $x \in R$;
(A3) for every $x \in R$ there exists an element, denoted $-x$, in R such that $x+(-x)=(-x)+x=0$;
(A4) $x+y=y+x$ for all $x, y \in R$;
(M0) for all $x, y \in R, \quad x y$ is an element of R;
(M1) $(x y) z=x(y z)$ for all $x, y, z \in R$;
(D) $x(y+z)=x y+x z$ and $(y+z) x=y x+z x$ for all $x, y, z \in R$.

Examples of rings

Informally, a ring is a set with three arithmetic operations: addition, subtraction and multiplication. Subtraction is defined by $x-y=x+(-y)$.

- Real numbers \mathbb{R}.
- Integers \mathbb{Z}.
- 2Z: even integers.
- \mathbb{Z}_{n} : congruence classes modulo n.
- $\mathcal{M}_{n}(\mathbb{R}):$ all $n \times n$ matrices with real entries.
- $\mathcal{M}_{n}(\mathbb{Z})$: all $n \times n$ matrices with integer entries.
- $\mathbb{R}[X]$: polynomials in variable X with real coefficients.
- All functions $f: S \rightarrow \mathbb{R}$ on a nonempty set S.
- Zero ring: any additive abelian group with trivial multiplication: $x y=0$ for all x and y.
- Trivial ring $\{0\}$.

Multiplication modulo n

We have an isomorphism of additive groups $\mathbb{Z}_{n} \cong \mathbb{Z} / n \mathbb{Z}$. Oftentimes, \mathbb{Z}_{n} is identified with $\mathbb{Z} / n \mathbb{Z}$.
We can define multiplication on \mathbb{Z}_{n} in two ways. Directly, given $x, y \in\{0,1,2, \ldots, n-1\}$, we let $x \cdot n y$ to be the remainder under division of $x y$ by n (multiplication modulo n).
Alternatively, we define multiplication on $\mathbb{Z} / n \mathbb{Z}$ by $(x+n \mathbb{Z})(y+n \mathbb{Z})=x y+n \mathbb{Z}$ for all $x, y \in \mathbb{Z}$.
Then \mathbb{Z}_{n} becomes a ring.

Example. Let M be the set of all 2×2 matrices of the form $\left(\begin{array}{rr}x & -y \\ y & x\end{array}\right)$, where $x, y \in \mathbb{R}$.

$$
\begin{aligned}
\left(\begin{array}{rr}
x & -y \\
y & x
\end{array}\right)+\left(\begin{array}{rr}
x^{\prime} & -y^{\prime} \\
y^{\prime} & x^{\prime}
\end{array}\right) & =\left(\begin{array}{ll}
x+x^{\prime} & -\left(y+y^{\prime}\right) \\
y+y^{\prime} & x+x^{\prime}
\end{array}\right), \\
-\left(\begin{array}{rr}
x & -y \\
y & x
\end{array}\right) & =\left(\begin{array}{cc}
-x & -(-y) \\
-y & -x
\end{array}\right), \\
\left(\begin{array}{rr}
x & -y \\
y & x
\end{array}\right)\left(\begin{array}{rr}
x^{\prime} & -y^{\prime} \\
y^{\prime} & x^{\prime}
\end{array}\right) & =\left(\begin{array}{ll}
x x^{\prime}-y y^{\prime} & -\left(x y^{\prime}+y x^{\prime}\right) \\
x y^{\prime}+y x^{\prime} & x x^{\prime}-y y^{\prime}
\end{array}\right) .
\end{aligned}
$$

Hence M is closed under matrix addition, taking the negative, and matrix multiplication. Also, the multiplication is commutative on M. The associativity and commutativity of the addition, the associativity of the multiplication, and the distributive law hold on M since they hold for all 2×2 matrices. Thus M is a commutative ring.
Remark. M is the ring of complex numbers $x+y i$ "in disguise".

Divisors of zero

Theorem Let R be a ring. Then $x 0=0 x=0$ for all $x \in R$.
Proof: Let $y=x 0$. Then $y+y=x 0+x 0=x(0+0)$ $=x 0=y$. It follows that $(-y)+y+y=(-y)+y$, hence $y=0$. Similarly, one shows that $0 x=0$.

A nonzero element x of a ring R is a left zero divisor if $x y=0$ for another nonzero element $y \in R$. The element y is called a right zero divisor.

Examples. - In the ring \mathbb{Z}_{6}, the zero divisors are congruence classes of 2,3 and 4 , as $2 \cdot 3 \equiv 4 \cdot 3 \equiv 0(\bmod 6)$.

- In the ring $\mathcal{M}_{n}(\mathbb{R})$, the zero divisors (both left and right) are nonzero matrices with zero determinant. For instance, $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right), \quad\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)^{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
- In any zero ring, all nonzero elements are zero divisors.

Integral domains

A ring R is called a domain if it has no zero divisors.
Theorem Given a nontrivial ring R, the following are equivalent:

- R is a domain,
- $R \backslash\{0\}$ is a semigroup under multiplication,
- $R \backslash\{0\}$ is a semigroup with cancellation under multiplication.
Idea of the proof: No zero divisors means that $R \backslash\{0\}$ is closed under multiplication. Further, if $a \neq 0$ then $a b=a c$ $\Longrightarrow a(b-c)=0 \Longrightarrow b-c=0 \Longrightarrow b=c$.
A ring R is called commutative if the multiplication is commutative. R is called a ring with unity if there exists an identity element for multiplication (denoted 1).
An integral domain is a nontrivial commutative ring with unity and no zero divisors.

Fields

Definition. A field is a set F, together with two binary operations called addition and multiplication and denoted accordingly, such that

- F is an abelian group under addition,
- $F \backslash\{0\}$ is an abelian group under multiplication,
- multiplication distributes over addition.

In other words, the field is a commutative ring with unity
$(1 \neq 0)$ such that any nonzero element has a multiplicative inverse.

Examples. - Real numbers \mathbb{R}.

- Rational numbers \mathbb{Q}.
- Complex numbers \mathbb{C}.
- \mathbb{Z}_{p} : congruence classes modulo p, where p is prime.
- $\mathbb{R}(X)$: rational functions in variable X with real coefficients.

Basic properties of fields

- The zero 0 and the unity 1 are unique.
- For any $a \in F$, the negative $-a$ is unique.
- For any $a \neq 0$, the inverse a^{-1} is unique.
- $-(-a)=a$ for all $a \in F$.
- $0 \cdot a=0$ for all $a \in F$.
- $a b=0$ implies that $a=0$ or $b=0$.
- $(-1) \cdot a=-a$ for all $a \in F$.
- $(-1) \cdot(-1)=1$.
- $(-a) b=a(-b)=-a b$ for all $a, b \in F$.
- $(a-b) c=a c-b c$ for all $a, b, c \in F$.

Characteristic of a field

A field F is said to be of nonzero characteristic if $\underbrace{1+1+\cdots+1}=0$ for some positive integer n. n summands
The smallest integer with this property is called the characteristic of F. Otherwise the field F has characteristic 0 .

The fields \mathbb{Q}, \mathbb{R}, and \mathbb{C} have characteristic 0 . The field \mathbb{Z}_{p} (p prime) has characteristic p. In general, any finite field has nonzero characteristic. Any nonzero characteristic is prime since

Problem. Let $F=\{0,1, a, b\}$ be a field consisting of 4 elements, where 0 denotes the additive identity element, 1 denotes the multiplicative identity element, and a, b denote the remaining two elements. Fill in the addition and multiplication tables for the field F.

Problem. Let $F=\{0,1, a, b\}$ be a field consisting of 4 elements, where 0 denotes the additive identity element, 1 denotes the multiplicative identity element, and a, b denote the remaining two elements. Fill in the addition and multiplication tables for the field F.

+	0	1	a	b
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0

\times	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

Problem. Let $F=\{0,1, a, b\}$ be a field consisting of 4 elements, where 0 denotes the additive identity element, 1 denotes the multiplicative identity element, and a, b denote the remaining two elements. Fill in the addition and multiplication tables for the field F.

Remarks on solution. First we fill in the multiplication table. Since $0 x=0$ and $1 x=x$ for every $x \in F$, it remains to determine only a^{2}, b^{2}, and $a b=b a$. Using the fact that $\{1, a, b\}$ is a multiplicative group, we obtain that $a b=1$, $a^{2}=b$, and $b^{2}=a$.
As for the addition table, we have $x+0=x$ for every $x \in F$. Next step is to determine $1+1$. Assuming $1+1=a$, we obtain $a+1=b$ and $b+1=0$. This is a contradiction: the characteristic of F turns out to be 4, not a prime! Hence $1+1 \neq a$. Similarly, $1+1 \neq b$. By deduction, $1+1=0$. Then $x+x=1 x+1 x=(1+1) x=0 x=0$ for all $x \in F$. The rest is filled in using the cancellation ("sudoku") laws.

